Average Ratings 0 Ratings
Average Ratings 0 Ratings
Description
NVIDIA NeMo Megatron serves as a comprehensive framework designed for the training and deployment of large language models (LLMs) that can range from billions to trillions of parameters. As a integral component of the NVIDIA AI platform, it provides a streamlined, efficient, and cost-effective solution in a containerized format for constructing and deploying LLMs. Tailored for enterprise application development, the framework leverages cutting-edge technologies stemming from NVIDIA research and offers a complete workflow that automates distributed data processing, facilitates the training of large-scale custom models like GPT-3, T5, and multilingual T5 (mT5), and supports model deployment for large-scale inference. The process of utilizing LLMs becomes straightforward with the availability of validated recipes and predefined configurations that streamline both training and inference. Additionally, the hyperparameter optimization tool simplifies the customization of models by automatically exploring the optimal hyperparameter configurations, enhancing performance for training and inference across various distributed GPU cluster setups. This approach not only saves time but also ensures that users can achieve superior results with minimal effort.
Description
PanGu-α has been created using the MindSpore framework and utilizes a powerful setup of 2048 Ascend 910 AI processors for its training. The training process employs an advanced parallelism strategy that leverages MindSpore Auto-parallel, which integrates five different parallelism dimensions—data parallelism, operation-level model parallelism, pipeline model parallelism, optimizer model parallelism, and rematerialization—to effectively distribute tasks across the 2048 processors. To improve the model's generalization, we gathered 1.1TB of high-quality Chinese language data from diverse fields for pretraining. We conduct extensive tests on PanGu-α's generation capabilities across multiple situations, such as text summarization, question answering, and dialogue generation. Additionally, we examine how varying model scales influence few-shot performance across a wide array of Chinese NLP tasks. The results from our experiments highlight the exceptional performance of PanGu-α, demonstrating its strengths in handling numerous tasks even in few-shot or zero-shot contexts, thus showcasing its versatility and robustness. This comprehensive evaluation reinforces the potential applications of PanGu-α in real-world scenarios.
API Access
Has API
API Access
Has API
Screenshots View All
No images available
Integrations
Amazon SageMaker Model Training
BioNeMo
Pricing Details
No price information available.
Free Trial
Free Version
Pricing Details
No price information available.
Free Trial
Free Version
Deployment
Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook
Deployment
Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook
Customer Support
Business Hours
Live Rep (24/7)
Online Support
Customer Support
Business Hours
Live Rep (24/7)
Online Support
Types of Training
Training Docs
Webinars
Live Training (Online)
In Person
Types of Training
Training Docs
Webinars
Live Training (Online)
In Person
Vendor Details
Company Name
NVIDIA
Founded
1993
Country
United States
Website
developer.nvidia.com/nemo/megatron
Vendor Details
Company Name
Huawei
Founded
1987
Country
China
Website
arxiv.org/abs/2104.12369