Average Ratings 0 Ratings
Average Ratings 0 Ratings
Description
NVIDIA's DeepStream SDK serves as a robust toolkit for streaming analytics, leveraging GStreamer to facilitate AI-driven processing across various sensors, including video, audio, and image data. It empowers developers to craft intricate stream-processing pipelines that seamlessly integrate neural networks alongside advanced functionalities like tracking, video encoding and decoding, as well as rendering, thereby enabling real-time analysis of diverse data formats. DeepStream plays a crucial role within NVIDIA Metropolis, a comprehensive platform aimed at converting pixel and sensor information into practical insights. This SDK presents a versatile and dynamic environment catered to multiple sectors, offering support for an array of programming languages such as C/C++, Python, and an easy-to-use UI through Graph Composer. By enabling real-time comprehension of complex, multi-modal sensor information at the edge, it enhances operational efficiency while also providing managed AI services that can be deployed in cloud-native containers managed by Kubernetes. As industries increasingly rely on AI for decision-making, DeepStream's capabilities become even more vital in unlocking the value embedded within sensor data.
Description
TFlearn is a flexible and clear deep learning framework that operates on top of TensorFlow. Its primary aim is to offer a more user-friendly API for TensorFlow, which accelerates the experimentation process while ensuring complete compatibility and clarity with the underlying framework. The library provides an accessible high-level interface for developing deep neural networks, complete with tutorials and examples for guidance. It facilitates rapid prototyping through its modular design, which includes built-in neural network layers, regularizers, optimizers, and metrics. Users benefit from full transparency regarding TensorFlow, as all functions are tensor-based and can be utilized independently of TFLearn. Additionally, it features robust helper functions to assist in training any TensorFlow graph, accommodating multiple inputs, outputs, and optimization strategies. The graph visualization is user-friendly and aesthetically pleasing, offering insights into weights, gradients, activations, and more. Moreover, the high-level API supports a wide range of contemporary deep learning architectures, encompassing Convolutions, LSTM, BiRNN, BatchNorm, PReLU, Residual networks, and Generative networks, making it a versatile tool for researchers and developers alike.
API Access
Has API
API Access
Has API
Integrations
TensorFlow
C
C++
Helm
Kubernetes
NVIDIA Jetson
NVIDIA Metropolis
NVIDIA TensorRT
NVIDIA Triton Inference Server
PyTorch
Integrations
TensorFlow
C
C++
Helm
Kubernetes
NVIDIA Jetson
NVIDIA Metropolis
NVIDIA TensorRT
NVIDIA Triton Inference Server
PyTorch
Pricing Details
No price information available.
Free Trial
Free Version
Pricing Details
No price information available.
Free Trial
Free Version
Deployment
Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook
Deployment
Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook
Customer Support
Business Hours
Live Rep (24/7)
Online Support
Customer Support
Business Hours
Live Rep (24/7)
Online Support
Types of Training
Training Docs
Webinars
Live Training (Online)
In Person
Types of Training
Training Docs
Webinars
Live Training (Online)
In Person
Vendor Details
Company Name
NVIDIA
Founded
1993
Country
United States
Website
developer.nvidia.com/deepstream-sdk
Vendor Details
Company Name
TFLearn
Website
tflearn.org
Product Features
Deep Learning
Convolutional Neural Networks
Document Classification
Image Segmentation
ML Algorithm Library
Model Training
Neural Network Modeling
Self-Learning
Visualization
Product Features
Deep Learning
Convolutional Neural Networks
Document Classification
Image Segmentation
ML Algorithm Library
Model Training
Neural Network Modeling
Self-Learning
Visualization