Average Ratings 0 Ratings
Average Ratings 0 Ratings
Description
MonoQwen2-VL-v0.1 represents the inaugural visual document reranker aimed at improving the quality of visual documents retrieved within Retrieval-Augmented Generation (RAG) systems. Conventional RAG methodologies typically involve transforming documents into text through Optical Character Recognition (OCR), a process that can be labor-intensive and often leads to the omission of critical information, particularly for non-text elements such as graphs and tables. To combat these challenges, MonoQwen2-VL-v0.1 utilizes Visual Language Models (VLMs) that can directly interpret images, thus bypassing the need for OCR and maintaining the fidelity of visual information. The reranking process unfolds in two stages: it first employs distinct encoding to create a selection of potential documents, and subsequently applies a cross-encoding model to reorder these options based on their relevance to the given query. By implementing Low-Rank Adaptation (LoRA) atop the Qwen2-VL-2B-Instruct model, MonoQwen2-VL-v0.1 not only achieves impressive results but does so while keeping memory usage to a minimum. This innovative approach signifies a substantial advancement in the handling of visual data within RAG frameworks, paving the way for more effective information retrieval strategies.
Description
QwQ-Max-Preview is a cutting-edge AI model based on the Qwen2.5-Max framework, specifically engineered to excel in areas such as complex reasoning, mathematical problem-solving, programming, and agent tasks. This preview showcases its enhanced capabilities across a variety of general-domain applications while demonstrating proficiency in managing intricate workflows. Anticipated to be officially released as open-source software under the Apache 2.0 license, QwQ-Max-Preview promises significant improvements and upgrades in its final iteration. Additionally, it contributes to the development of a more inclusive AI environment, as evidenced by the forthcoming introduction of the Qwen Chat application and streamlined model versions like QwQ-32B, which cater to developers interested in local deployment solutions. This initiative not only broadens accessibility but also encourages innovation within the AI community.
API Access
Has API
API Access
Has API
Integrations
Qwen Chat
Sesterce
Pricing Details
No price information available.
Free Trial
Free Version
Pricing Details
Free
Free Trial
Free Version
Deployment
Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook
Deployment
Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook
Customer Support
Business Hours
Live Rep (24/7)
Online Support
Customer Support
Business Hours
Live Rep (24/7)
Online Support
Types of Training
Training Docs
Webinars
Live Training (Online)
In Person
Types of Training
Training Docs
Webinars
Live Training (Online)
In Person
Vendor Details
Company Name
LightOn
Founded
2016
Country
France
Website
www.lighton.ai/lighton-blogs/monoqwen-vision
Vendor Details
Company Name
Alibaba
Founded
1999
Country
China
Website
qwenlm.github.io/blog/qwq-max-preview/