Average Ratings 3 Ratings
Average Ratings 0 Ratings
Description
The Microsoft Cognitive Toolkit (CNTK) is an open-source framework designed for high-performance distributed deep learning applications. It represents neural networks through a sequence of computational operations organized in a directed graph structure. Users can effortlessly implement and integrate various popular model architectures, including feed-forward deep neural networks (DNNs), convolutional neural networks (CNNs), and recurrent neural networks (RNNs/LSTMs). CNTK employs stochastic gradient descent (SGD) along with error backpropagation learning, enabling automatic differentiation and parallel processing across multiple GPUs and servers. It can be utilized as a library within Python, C#, or C++ applications, or operated as an independent machine-learning tool utilizing its own model description language, BrainScript. Additionally, CNTK's model evaluation capabilities can be accessed from Java applications, broadening its usability. The toolkit is compatible with 64-bit Linux as well as 64-bit Windows operating systems. For installation, users have the option of downloading pre-compiled binary packages or building the toolkit from source code available on GitHub, which provides flexibility depending on user preferences and technical expertise. This versatility makes CNTK a powerful tool for developers looking to harness deep learning in their projects.
Description
NVIDIA PhysicsNeMo is a publicly available Python-based deep-learning framework designed for the creation, training, fine-tuning, and inference of physics-AI models that integrate physical principles with data, thereby enhancing simulations, developing accurate surrogate models, and facilitating near-real-time predictions in various fields such as computational fluid dynamics, structural mechanics, electromagnetics, weather forecasting, climate studies, and digital twin technologies. This framework offers powerful, GPU-accelerated capabilities along with Python APIs that are built on the PyTorch platform and distributed under the Apache 2.0 license, featuring a selection of curated model architectures that include physics-informed neural networks, neural operators, graph neural networks, and generative AI techniques, enabling developers to effectively leverage physics-based causal relationships together with empirical data for high-quality engineering modeling. Additionally, PhysicsNeMo provides comprehensive training pipelines that encompass everything from geometry ingestion to the application of differential equations, along with reference application recipes that help users quickly initiate their development workflows. This combination of features makes PhysicsNeMo an essential tool for engineers and researchers seeking to advance their work in physics-driven AI applications.
API Access
Has API
API Access
Has API
Integrations
AI Skills Navigator
Alteryx
AssurX
AuraQuantic
Azure Data Science Virtual Machines
Azure Database for MariaDB
Microsoft Dynamics 365 Finance
Microsoft Dynamics Supply Chain Management
Microsoft Power Platform
PyTorch
Integrations
AI Skills Navigator
Alteryx
AssurX
AuraQuantic
Azure Data Science Virtual Machines
Azure Database for MariaDB
Microsoft Dynamics 365 Finance
Microsoft Dynamics Supply Chain Management
Microsoft Power Platform
PyTorch
Pricing Details
No price information available.
Free Trial
Free Version
Pricing Details
Free
Free Trial
Free Version
Deployment
Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook
Deployment
Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook
Customer Support
Business Hours
Live Rep (24/7)
Online Support
Customer Support
Business Hours
Live Rep (24/7)
Online Support
Types of Training
Training Docs
Webinars
Live Training (Online)
In Person
Types of Training
Training Docs
Webinars
Live Training (Online)
In Person
Vendor Details
Company Name
Microsoft
Founded
1975
Country
United States
Website
docs.microsoft.com/en-us/cognitive-toolkit/
Vendor Details
Company Name
NVIDIA
Founded
1993
Country
United States
Website
developer.nvidia.com/physicsnemo
Product Features
Deep Learning
Convolutional Neural Networks
Document Classification
Image Segmentation
ML Algorithm Library
Model Training
Neural Network Modeling
Self-Learning
Visualization