Average Ratings 3 Ratings

Total
ease
features
design
support

Average Ratings 0 Ratings

Total
ease
features
design
support

No User Reviews. Be the first to provide a review:

Write a Review

Description

The Microsoft Cognitive Toolkit (CNTK) is an open-source framework designed for high-performance distributed deep learning applications. It represents neural networks through a sequence of computational operations organized in a directed graph structure. Users can effortlessly implement and integrate various popular model architectures, including feed-forward deep neural networks (DNNs), convolutional neural networks (CNNs), and recurrent neural networks (RNNs/LSTMs). CNTK employs stochastic gradient descent (SGD) along with error backpropagation learning, enabling automatic differentiation and parallel processing across multiple GPUs and servers. It can be utilized as a library within Python, C#, or C++ applications, or operated as an independent machine-learning tool utilizing its own model description language, BrainScript. Additionally, CNTK's model evaluation capabilities can be accessed from Java applications, broadening its usability. The toolkit is compatible with 64-bit Linux as well as 64-bit Windows operating systems. For installation, users have the option of downloading pre-compiled binary packages or building the toolkit from source code available on GitHub, which provides flexibility depending on user preferences and technical expertise. This versatility makes CNTK a powerful tool for developers looking to harness deep learning in their projects.

Description

NVIDIA PhysicsNeMo is a publicly available Python-based deep-learning framework designed for the creation, training, fine-tuning, and inference of physics-AI models that integrate physical principles with data, thereby enhancing simulations, developing accurate surrogate models, and facilitating near-real-time predictions in various fields such as computational fluid dynamics, structural mechanics, electromagnetics, weather forecasting, climate studies, and digital twin technologies. This framework offers powerful, GPU-accelerated capabilities along with Python APIs that are built on the PyTorch platform and distributed under the Apache 2.0 license, featuring a selection of curated model architectures that include physics-informed neural networks, neural operators, graph neural networks, and generative AI techniques, enabling developers to effectively leverage physics-based causal relationships together with empirical data for high-quality engineering modeling. Additionally, PhysicsNeMo provides comprehensive training pipelines that encompass everything from geometry ingestion to the application of differential equations, along with reference application recipes that help users quickly initiate their development workflows. This combination of features makes PhysicsNeMo an essential tool for engineers and researchers seeking to advance their work in physics-driven AI applications.

API Access

Has API

API Access

Has API

Screenshots View All

Screenshots View All

Integrations

AI Skills Navigator
Alteryx
AssurX
AuraQuantic
Azure Data Science Virtual Machines
Azure Database for MariaDB
Microsoft Dynamics 365 Finance
Microsoft Dynamics Supply Chain Management
Microsoft Power Platform
PyTorch
Python

Integrations

AI Skills Navigator
Alteryx
AssurX
AuraQuantic
Azure Data Science Virtual Machines
Azure Database for MariaDB
Microsoft Dynamics 365 Finance
Microsoft Dynamics Supply Chain Management
Microsoft Power Platform
PyTorch
Python

Pricing Details

No price information available.
Free Trial
Free Version

Pricing Details

Free
Free Trial
Free Version

Deployment

Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook

Deployment

Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook

Customer Support

Business Hours
Live Rep (24/7)
Online Support

Customer Support

Business Hours
Live Rep (24/7)
Online Support

Types of Training

Training Docs
Webinars
Live Training (Online)
In Person

Types of Training

Training Docs
Webinars
Live Training (Online)
In Person

Vendor Details

Company Name

Microsoft

Founded

1975

Country

United States

Website

docs.microsoft.com/en-us/cognitive-toolkit/

Vendor Details

Company Name

NVIDIA

Founded

1993

Country

United States

Website

developer.nvidia.com/physicsnemo

Product Features

Deep Learning

Convolutional Neural Networks
Document Classification
Image Segmentation
ML Algorithm Library
Model Training
Neural Network Modeling
Self-Learning
Visualization

Product Features

Alternatives

Alternatives

Alchemite Reviews

Alchemite

Intellegens
COMSOL Multiphysics Reviews

COMSOL Multiphysics

Comsol Group
FEATool Multiphysics Reviews

FEATool Multiphysics

Precise Simulation