Average Ratings 0 Ratings

Total
ease
features
design
support

No User Reviews. Be the first to provide a review:

Write a Review

Average Ratings 0 Ratings

Total
ease
features
design
support

No User Reviews. Be the first to provide a review:

Write a Review

Description

Every minute, a multitude of autonomously generated tests is executed to identify vulnerabilities and facilitate swift remediation. Mayhem eliminates uncertainty surrounding untested code by autonomously creating test suites that yield practical outcomes. There is no requirement to recompile the code, as Mayhem operates seamlessly with dockerized images. Its self-learning machine learning technology continuously executes thousands of tests each second, searching for crashes and defects, allowing developers to concentrate on enhancing features. Background continuous testing detects new defects and expands code coverage effectively. For each defect identified, Mayhem provides a detailed reproduction and backtrace, prioritizing them according to your risk assessment. Users can view all results, organized and prioritized based on immediate needs for fixes. Mayhem integrates effortlessly into your existing development tools and build pipeline, granting developers access to actionable insights regardless of the programming language or tools utilized by the team. This adaptability ensures that teams can maintain their workflow without disruption while enhancing their code quality.

Description

American fuzzy lop is a security-focused fuzzer that utilizes a unique form of compile-time instrumentation along with genetic algorithms to automatically generate effective test cases that can uncover new internal states within the targeted binary. This approach significantly enhances the functional coverage of the code being fuzzed. Additionally, the compact and synthesized test cases produced by the tool can serve as a valuable resource for initiating other, more demanding testing processes in the future. Unlike many other instrumented fuzzers, afl-fuzz is engineered for practicality, boasting a minimal performance overhead while employing a diverse array of effective fuzzing techniques and strategies for minimizing effort. It requires almost no setup and can effortlessly manage complicated, real-world scenarios, such as those found in common image parsing or file compression libraries. As an instrumentation-guided genetic fuzzer, it excels at generating complex file semantics applicable to a wide variety of challenging targets, making it a versatile choice for security testing. Its ability to adapt to different environments further enhances its appeal for developers seeking robust solutions.

API Access

Has API

API Access

Has API

Screenshots View All

Screenshots View All

Integrations

C
C++
Go
Java
Objective-C
Python
Rust
Ada
Android
Atlassian Clover
Azure DevOps Projects
Cargo
CircleCI
ClusterFuzz
Docker
FreeBSD
GitHub
Jenkins
OpenBSD
QEMU

Integrations

C
C++
Go
Java
Objective-C
Python
Rust
Ada
Android
Atlassian Clover
Azure DevOps Projects
Cargo
CircleCI
ClusterFuzz
Docker
FreeBSD
GitHub
Jenkins
OpenBSD
QEMU

Pricing Details

No price information available.
Free Trial
Free Version

Pricing Details

Free
Free Trial
Free Version

Deployment

Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook

Deployment

Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook

Customer Support

Business Hours
Live Rep (24/7)
Online Support

Customer Support

Business Hours
Live Rep (24/7)
Online Support

Types of Training

Training Docs
Webinars
Live Training (Online)
In Person

Types of Training

Training Docs
Webinars
Live Training (Online)
In Person

Vendor Details

Company Name

Mayhem

Website

www.mayhem.security/mayhem-code-security

Vendor Details

Company Name

Google

Country

United States

Website

github.com/google/AFL

Product Features

Product Features

Alternatives

ClusterFuzz Reviews

ClusterFuzz

Google

Alternatives

go-fuzz Reviews

go-fuzz

dvyukov
Mayhem Reviews

Mayhem

ForAllSecure
afl-unicorn Reviews

afl-unicorn

Battelle
Sulley Reviews

Sulley

OpenRCE
LibFuzzer Reviews

LibFuzzer

LLVM Project