Average Ratings 0 Ratings
Average Ratings 0 Ratings
Description
The VLFeat open source library offers a range of well-known algorithms focused on computer vision, particularly for tasks such as image comprehension and the extraction and matching of local features. Among its various algorithms are Fisher Vector, VLAD, SIFT, MSER, k-means, hierarchical k-means, the agglomerative information bottleneck, SLIC superpixels, quick shift superpixels, and large scale SVM training, among many others. Developed in C to ensure high performance and broad compatibility, it also has MATLAB interfaces that enhance user accessibility, complemented by thorough documentation. This library is compatible with operating systems including Windows, Mac OS X, and Linux, making it widely usable across different platforms. Additionally, MatConvNet serves as a MATLAB toolbox designed specifically for implementing Convolutional Neural Networks (CNNs) tailored for various computer vision applications. Known for its simplicity and efficiency, MatConvNet is capable of running and training cutting-edge CNNs, with numerous pre-trained models available for tasks such as image classification, segmentation, face detection, and text recognition. The combination of these tools provides a robust framework for researchers and developers in the field of computer vision.
Description
We engage in pioneering research on artificial intelligence to attain significant advantages in financial investment, shedding light on the market through innovative neuro-prediction techniques. Our approach integrates advanced deep reinforcement learning algorithms and graph-based learning with artificial neural networks to effectively model and forecast time series data. At Neuri, we focus on generating synthetic data that accurately reflects global financial markets, subjecting it to intricate simulations of trading behaviors. We are optimistic about the potential of quantum optimization to enhance our simulations beyond the capabilities of classical supercomputing technologies. Given that financial markets are constantly changing, we develop AI algorithms that adapt and learn in real-time, allowing us to discover relationships between various financial assets, classes, and markets. The intersection of neuroscience-inspired models, quantum algorithms, and machine learning in systematic trading remains a largely untapped area, presenting an exciting opportunity for future exploration and development. By pushing the boundaries of current methodologies, we aim to redefine how trading strategies are formulated and executed in this ever-evolving landscape.
API Access
Has API
API Access
Has API
Integrations
No details available.
Integrations
No details available.
Pricing Details
No price information available.
Free Trial
Free Version
Pricing Details
No price information available.
Free Trial
Free Version
Deployment
Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook
Deployment
Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook
Customer Support
Business Hours
Live Rep (24/7)
Online Support
Customer Support
Business Hours
Live Rep (24/7)
Online Support
Types of Training
Training Docs
Webinars
Live Training (Online)
In Person
Types of Training
Training Docs
Webinars
Live Training (Online)
In Person
Vendor Details
Company Name
VLFeat
Country
United States
Website
www.vlfeat.org/matconvnet/
Vendor Details
Company Name
Neuri
Founded
2018
Country
Singapore
Website
www.neuri.ai/
Product Features
Deep Learning
Convolutional Neural Networks
Document Classification
Image Segmentation
ML Algorithm Library
Model Training
Neural Network Modeling
Self-Learning
Visualization
Product Features
Deep Learning
Convolutional Neural Networks
Document Classification
Image Segmentation
ML Algorithm Library
Model Training
Neural Network Modeling
Self-Learning
Visualization