Average Ratings 0 Ratings

Total
ease
features
design
support

No User Reviews. Be the first to provide a review:

Write a Review

Average Ratings 0 Ratings

Total
ease
features
design
support

No User Reviews. Be the first to provide a review:

Write a Review

Description

MLlib, the machine learning library of Apache Spark, is designed to be highly scalable and integrates effortlessly with Spark's various APIs, accommodating programming languages such as Java, Scala, Python, and R. It provides an extensive range of algorithms and utilities, which encompass classification, regression, clustering, collaborative filtering, and the capabilities to build machine learning pipelines. By harnessing Spark's iterative computation features, MLlib achieves performance improvements that can be as much as 100 times faster than conventional MapReduce methods. Furthermore, it is built to function in a variety of environments, whether on Hadoop, Apache Mesos, Kubernetes, standalone clusters, or within cloud infrastructures, while also being able to access multiple data sources, including HDFS, HBase, and local files. This versatility not only enhances its usability but also establishes MLlib as a powerful tool for executing scalable and efficient machine learning operations in the Apache Spark framework. The combination of speed, flexibility, and a rich set of features renders MLlib an essential resource for data scientists and engineers alike.

Description

PySpark serves as the Python interface for Apache Spark, enabling the development of Spark applications through Python APIs and offering an interactive shell for data analysis in a distributed setting. In addition to facilitating Python-based development, PySpark encompasses a wide range of Spark functionalities, including Spark SQL, DataFrame support, Streaming capabilities, MLlib for machine learning, and the core features of Spark itself. Spark SQL, a dedicated module within Spark, specializes in structured data processing and introduces a programming abstraction known as DataFrame, functioning also as a distributed SQL query engine. Leveraging the capabilities of Spark, the streaming component allows for the execution of advanced interactive and analytical applications that can process both real-time and historical data, while maintaining the inherent advantages of Spark, such as user-friendliness and robust fault tolerance. Furthermore, PySpark's integration with these features empowers users to handle complex data operations efficiently across various datasets.

API Access

Has API

API Access

Has API

Screenshots View All

Screenshots View All

Integrations

Apache Spark
Amazon EC2
Amazon SageMaker Data Wrangler
Apache Cassandra
Apache HBase
Apache Hive
Apache Mesos
Comet LLM
Feast
Fosfor Decision Cloud
Hadoop
Java
Kubernetes
MapReduce
Python
R
Scala
Tecton
Union Pandera

Integrations

Apache Spark
Amazon EC2
Amazon SageMaker Data Wrangler
Apache Cassandra
Apache HBase
Apache Hive
Apache Mesos
Comet LLM
Feast
Fosfor Decision Cloud
Hadoop
Java
Kubernetes
MapReduce
Python
R
Scala
Tecton
Union Pandera

Pricing Details

No price information available.
Free Trial
Free Version

Pricing Details

No price information available.
Free Trial
Free Version

Deployment

Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook

Deployment

Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook

Customer Support

Business Hours
Live Rep (24/7)
Online Support

Customer Support

Business Hours
Live Rep (24/7)
Online Support

Types of Training

Training Docs
Webinars
Live Training (Online)
In Person

Types of Training

Training Docs
Webinars
Live Training (Online)
In Person

Vendor Details

Company Name

Apache Software Foundation

Founded

1995

Country

United States

Website

spark.apache.org/mllib/

Vendor Details

Company Name

PySpark

Website

spark.apache.org/docs/latest/api/python/

Product Features

Machine Learning

Deep Learning
ML Algorithm Library
Model Training
Natural Language Processing (NLP)
Predictive Modeling
Statistical / Mathematical Tools
Templates
Visualization

Product Features

Application Development

Access Controls/Permissions
Code Assistance
Code Refactoring
Collaboration Tools
Compatibility Testing
Data Modeling
Debugging
Deployment Management
Graphical User Interface
Mobile Development
No-Code
Reporting/Analytics
Software Development
Source Control
Testing Management
Version Control
Web App Development

Alternatives

Apache Spark Reviews

Apache Spark

Apache Software Foundation

Alternatives

Apache Mahout Reviews

Apache Mahout

Apache Software Foundation
Apache Spark Reviews

Apache Spark

Apache Software Foundation
Spark Streaming Reviews

Spark Streaming

Apache Software Foundation