Average Ratings 0 Ratings
Average Ratings 0 Ratings
Description
MLflow is an open-source suite designed to oversee the machine learning lifecycle, encompassing aspects such as experimentation, reproducibility, deployment, and a centralized model registry. The platform features four main components that facilitate various tasks: tracking and querying experiments encompassing code, data, configurations, and outcomes; packaging data science code to ensure reproducibility across multiple platforms; deploying machine learning models across various serving environments; and storing, annotating, discovering, and managing models in a unified repository. Among these, the MLflow Tracking component provides both an API and a user interface for logging essential aspects like parameters, code versions, metrics, and output files generated during the execution of machine learning tasks, enabling later visualization of results. It allows for logging and querying experiments through several interfaces, including Python, REST, R API, and Java API. Furthermore, an MLflow Project is a structured format for organizing data science code, ensuring it can be reused and reproduced easily, with a focus on established conventions. Additionally, the Projects component comes equipped with an API and command-line tools specifically designed for executing these projects effectively. Overall, MLflow streamlines the management of machine learning workflows, making it easier for teams to collaborate and iterate on their models.
Description
doteval serves as an AI-driven evaluation workspace that streamlines the development of effective evaluations, aligns LLM judges, and establishes reinforcement learning rewards, all integrated into one platform. This tool provides an experience similar to Cursor, allowing users to edit evaluations-as-code using a YAML schema, which makes it possible to version evaluations through various checkpoints, substitute manual tasks with AI-generated differences, and assess evaluation runs in tight execution loops to ensure alignment with proprietary datasets. Additionally, doteval enables the creation of detailed rubrics and aligned graders, promoting quick iterations and the generation of high-quality evaluation datasets. Users can make informed decisions regarding model updates or prompt enhancements, as well as export specifications for reinforcement learning training purposes. By drastically speeding up the evaluation and reward creation process by a factor of 10 to 100, doteval proves to be an essential resource for advanced AI teams working on intricate model tasks. In summary, doteval not only enhances efficiency but also empowers teams to achieve superior evaluation outcomes with ease.
API Access
Has API
API Access
Has API
Integrations
Amazon SageMaker
Apolo
Aporia
Axolotl
Comet LLM
Cranium
Dagster
Flyte
H2O.ai
IBM Databand
Integrations
Amazon SageMaker
Apolo
Aporia
Axolotl
Comet LLM
Cranium
Dagster
Flyte
H2O.ai
IBM Databand
Pricing Details
No price information available.
Free Trial
Free Version
Pricing Details
No price information available.
Free Trial
Free Version
Deployment
Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook
Deployment
Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook
Customer Support
Business Hours
Live Rep (24/7)
Online Support
Customer Support
Business Hours
Live Rep (24/7)
Online Support
Types of Training
Training Docs
Webinars
Live Training (Online)
In Person
Types of Training
Training Docs
Webinars
Live Training (Online)
In Person
Vendor Details
Company Name
MLflow
Founded
2018
Country
United States
Website
mlflow.org
Vendor Details
Company Name
doteval
Website
www.doteval.com
Product Features
Machine Learning
Deep Learning
ML Algorithm Library
Model Training
Natural Language Processing (NLP)
Predictive Modeling
Statistical / Mathematical Tools
Templates
Visualization