Average Ratings 0 Ratings

Total
ease
features
design
support

No User Reviews. Be the first to provide a review:

Write a Review

Average Ratings 0 Ratings

Total
ease
features
design
support

No User Reviews. Be the first to provide a review:

Write a Review

Description

MLflow is an open-source suite designed to oversee the machine learning lifecycle, encompassing aspects such as experimentation, reproducibility, deployment, and a centralized model registry. The platform features four main components that facilitate various tasks: tracking and querying experiments encompassing code, data, configurations, and outcomes; packaging data science code to ensure reproducibility across multiple platforms; deploying machine learning models across various serving environments; and storing, annotating, discovering, and managing models in a unified repository. Among these, the MLflow Tracking component provides both an API and a user interface for logging essential aspects like parameters, code versions, metrics, and output files generated during the execution of machine learning tasks, enabling later visualization of results. It allows for logging and querying experiments through several interfaces, including Python, REST, R API, and Java API. Furthermore, an MLflow Project is a structured format for organizing data science code, ensuring it can be reused and reproduced easily, with a focus on established conventions. Additionally, the Projects component comes equipped with an API and command-line tools specifically designed for executing these projects effectively. Overall, MLflow streamlines the management of machine learning workflows, making it easier for teams to collaborate and iterate on their models.

Description

MPCPy is a Python library designed to support the testing and execution of occupant-integrated model predictive control (MPC) within building systems. This tool emphasizes the application of data-driven, simplified physical or statistical models to forecast building performance and enhance control strategies. It comprises four primary modules that provide object classes for data importation, interaction with real or simulated systems, data-driven model estimation and validation, and optimization of control inputs. Although MPCPy serves as a platform for integration, it depends on various free, open-source third-party software for model execution, simulation, parameter estimation techniques, and optimization solvers. This encompasses Python libraries for scripting and data manipulation, along with more specialized software solutions tailored for distinct tasks. Notably, the modeling and optimization tasks related to physical systems are currently grounded in the specifications of the Modelica language, which enhances the flexibility and capability of the package. In essence, MPCPy enables users to leverage advanced modeling techniques through a versatile and collaborative environment.

API Access

Has API

API Access

Has API

Screenshots View All

Screenshots View All

Integrations

Amazon SageMaker
Azure Machine Learning
Databricks Data Intelligence Platform
Flyte
Google Cloud Platform
IBM Databand
Kedro
Kubernetes
LLaMA-Factory
Ludwig
OpenMetadata
RapidSOS
Superwise
TensorFlow
TrueFoundry
Ubuntu
Union Cloud
lakeFS
navio

Integrations

Amazon SageMaker
Azure Machine Learning
Databricks Data Intelligence Platform
Flyte
Google Cloud Platform
IBM Databand
Kedro
Kubernetes
LLaMA-Factory
Ludwig
OpenMetadata
RapidSOS
Superwise
TensorFlow
TrueFoundry
Ubuntu
Union Cloud
lakeFS
navio

Pricing Details

No price information available.
Free Trial
Free Version

Pricing Details

Free
Free Trial
Free Version

Deployment

Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook

Deployment

Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook

Customer Support

Business Hours
Live Rep (24/7)
Online Support

Customer Support

Business Hours
Live Rep (24/7)
Online Support

Types of Training

Training Docs
Webinars
Live Training (Online)
In Person

Types of Training

Training Docs
Webinars
Live Training (Online)
In Person

Vendor Details

Company Name

MLflow

Founded

2018

Country

United States

Website

mlflow.org

Vendor Details

Company Name

MPCPy

Country

United States

Website

github.com/lbl-srg/MPCPy

Product Features

Machine Learning

Deep Learning
ML Algorithm Library
Model Training
Natural Language Processing (NLP)
Predictive Modeling
Statistical / Mathematical Tools
Templates
Visualization

Alternatives

Alternatives

Union Cloud Reviews

Union Cloud

Union.ai
Cybernetica CENIT Reviews

Cybernetica CENIT

Cybernetica
INCA MPC Reviews

INCA MPC

Inca Tools
COLUMBO Reviews

COLUMBO

PiControl Solutions