Average Ratings 0 Ratings
Average Ratings 0 Ratings
Description
MLBox is an advanced Python library designed for Automated Machine Learning. This library offers a variety of features, including rapid data reading, efficient distributed preprocessing, comprehensive data cleaning, robust feature selection, and effective leak detection. It excels in hyper-parameter optimization within high-dimensional spaces and includes cutting-edge predictive models for both classification and regression tasks, such as Deep Learning, Stacking, and LightGBM, along with model interpretation for predictions. The core MLBox package is divided into three sub-packages: preprocessing, optimization, and prediction. Each sub-package serves a specific purpose: the preprocessing module focuses on data reading and preparation, the optimization module tests and fine-tunes various learners, and the prediction module handles target predictions on test datasets, ensuring a streamlined workflow for machine learning practitioners. Overall, MLBox simplifies the machine learning process, making it accessible and efficient for users.
Description
Utilize Weights & Biases (WandB) for experiment tracking, hyperparameter tuning, and versioning of both models and datasets. With just five lines of code, you can efficiently monitor, compare, and visualize your machine learning experiments. Simply enhance your script with a few additional lines, and each time you create a new model version, a fresh experiment will appear in real-time on your dashboard. Leverage our highly scalable hyperparameter optimization tool to enhance your models' performance. Sweeps are designed to be quick, easy to set up, and seamlessly integrate into your current infrastructure for model execution. Capture every aspect of your comprehensive machine learning pipeline, encompassing data preparation, versioning, training, and evaluation, making it incredibly straightforward to share updates on your projects.
Implementing experiment logging is a breeze; just add a few lines to your existing script and begin recording your results. Our streamlined integration is compatible with any Python codebase, ensuring a smooth experience for developers.
Additionally, W&B Weave empowers developers to confidently create and refine their AI applications through enhanced support and resources.
API Access
Has API
API Access
Has API
Integrations
Axolotl
Cuckoo
Disco.dev
GitHub
Jupyter Notebook
Keras
Lightly
Ludwig
NVIDIA AI Foundations
Python
Integrations
Axolotl
Cuckoo
Disco.dev
GitHub
Jupyter Notebook
Keras
Lightly
Ludwig
NVIDIA AI Foundations
Python
Pricing Details
No price information available.
Free Trial
Free Version
Pricing Details
No price information available.
Free Trial
Free Version
Deployment
Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook
Deployment
Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook
Customer Support
Business Hours
Live Rep (24/7)
Online Support
Customer Support
Business Hours
Live Rep (24/7)
Online Support
Types of Training
Training Docs
Webinars
Live Training (Online)
In Person
Types of Training
Training Docs
Webinars
Live Training (Online)
In Person
Vendor Details
Company Name
Axel ARONIO DE ROMBLAY
Founded
2017
Website
mlbox.readthedocs.io/en/latest/
Vendor Details
Company Name
Weights & Biases
Founded
2017
Country
United States
Website
wandb.ai/site
Product Features
Machine Learning
Deep Learning
ML Algorithm Library
Model Training
Natural Language Processing (NLP)
Predictive Modeling
Statistical / Mathematical Tools
Templates
Visualization
Product Features
Artificial Intelligence
Chatbot
For Healthcare
For Sales
For eCommerce
Image Recognition
Machine Learning
Multi-Language
Natural Language Processing
Predictive Analytics
Process/Workflow Automation
Rules-Based Automation
Virtual Personal Assistant (VPA)
Data Preparation
Collaboration Tools
Data Access
Data Blending
Data Cleansing
Data Governance
Data Mashup
Data Modeling
Data Transformation
Machine Learning
Visual User Interface
Machine Learning
Deep Learning
ML Algorithm Library
Model Training
Natural Language Processing (NLP)
Predictive Modeling
Statistical / Mathematical Tools
Templates
Visualization