Average Ratings 0 Ratings

Total
ease
features
design
support

No User Reviews. Be the first to provide a review:

Write a Review

Average Ratings 0 Ratings

Total
ease
features
design
support

No User Reviews. Be the first to provide a review:

Write a Review

Description

LibFuzzer serves as an in-process, coverage-guided engine for evolutionary fuzzing. By being linked directly with the library under examination, it injects fuzzed inputs through a designated entry point, or target function, allowing it to monitor the code paths that are executed while creating variations of the input data to enhance code coverage. The coverage data is obtained through LLVM’s SanitizerCoverage instrumentation, ensuring that users have detailed insights into the testing process. Notably, LibFuzzer continues to receive support, with critical bugs addressed as they arise. To begin utilizing LibFuzzer with a library, one must first create a fuzz target—this function receives a byte array and interacts with the API being tested in a meaningful way. Importantly, this fuzz target operates independently of LibFuzzer, which facilitates its use alongside other fuzzing tools such as AFL or Radamsa, thereby providing versatility in testing strategies. Furthermore, the ability to leverage multiple fuzzing engines can lead to more robust testing outcomes and clearer insights into the library's vulnerabilities.

Description

Syzkaller functions as an unsupervised, coverage-guided fuzzer aimed at exploring vulnerabilities within kernel environments, offering support for various operating systems such as FreeBSD, Fuchsia, gVisor, Linux, NetBSD, OpenBSD, and Windows. Originally designed with a focus on fuzzing the Linux kernel, its capabilities have been expanded to encompass additional operating systems over time. When a kernel crash is identified within one of the virtual machines, syzkaller promptly initiates the reproduction of that crash. By default, it operates using four virtual machines for this reproduction process and subsequently works to minimize the program responsible for the crash. This reproduction phase can temporarily halt fuzzing activities, as all VMs may be occupied with reproducing the identified issues. The duration for reproducing a single crash can vary significantly, ranging from mere minutes to potentially an hour, depending on the complexity and reproducibility of the crash event. This ability to minimize and analyze crashes enhances the overall effectiveness of the fuzzing process, allowing for better identification of vulnerabilities in the kernel.

API Access

Has API

API Access

Has API

Screenshots View All

Screenshots View All

Integrations

Atheris
C
C++
ClusterFuzz
FreeBSD
Fuchsia Service Maintenance Software
Fuzzbuzz
Google ClusterFuzz
Jazzer
NetBSD
OpenBSD

Integrations

Atheris
C
C++
ClusterFuzz
FreeBSD
Fuchsia Service Maintenance Software
Fuzzbuzz
Google ClusterFuzz
Jazzer
NetBSD
OpenBSD

Pricing Details

Free
Free Trial
Free Version

Pricing Details

Free
Free Trial
Free Version

Deployment

Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook

Deployment

Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook

Customer Support

Business Hours
Live Rep (24/7)
Online Support

Customer Support

Business Hours
Live Rep (24/7)
Online Support

Types of Training

Training Docs
Webinars
Live Training (Online)
In Person

Types of Training

Training Docs
Webinars
Live Training (Online)
In Person

Vendor Details

Company Name

LLVM Project

Founded

2003

Website

llvm.org/docs/LibFuzzer.html

Vendor Details

Company Name

Google

Country

United States

Website

github.com/google/syzkaller

Product Features

Product Features

Alternatives

Atheris Reviews

Atheris

Google

Alternatives

Atheris Reviews

Atheris

Google
afl-unicorn Reviews

afl-unicorn

Battelle
LibFuzzer Reviews

LibFuzzer

LLVM Project
go-fuzz Reviews

go-fuzz

dvyukov
Jazzer Reviews

Jazzer

Code Intelligence
ClusterFuzz Reviews

ClusterFuzz

Google
ToothPicker Reviews

ToothPicker

Secure Mobile Networking Lab