Average Ratings 0 Ratings

Total
ease
features
design
support

No User Reviews. Be the first to provide a review:

Write a Review

Average Ratings 0 Ratings

Total
ease
features
design
support

No User Reviews. Be the first to provide a review:

Write a Review

Description

LibFuzzer serves as an in-process, coverage-guided engine for evolutionary fuzzing. By being linked directly with the library under examination, it injects fuzzed inputs through a designated entry point, or target function, allowing it to monitor the code paths that are executed while creating variations of the input data to enhance code coverage. The coverage data is obtained through LLVM’s SanitizerCoverage instrumentation, ensuring that users have detailed insights into the testing process. Notably, LibFuzzer continues to receive support, with critical bugs addressed as they arise. To begin utilizing LibFuzzer with a library, one must first create a fuzz target—this function receives a byte array and interacts with the API being tested in a meaningful way. Importantly, this fuzz target operates independently of LibFuzzer, which facilitates its use alongside other fuzzing tools such as AFL or Radamsa, thereby providing versatility in testing strategies. Furthermore, the ability to leverage multiple fuzzing engines can lead to more robust testing outcomes and clearer insights into the library's vulnerabilities.

Description

ToothPicker serves as an innovative in-process, coverage-guided fuzzer specifically designed for iOS, focusing on the Bluetooth daemon and various Bluetooth protocols. Utilizing FRIDA as its foundation, this tool can be tailored to function on any platform compatible with FRIDA. The repository also features an over-the-air fuzzer that showcases an example implementation for fuzzing Apple's MagicPairing protocol through InternalBlue. Furthermore, it includes the ReplayCrashFile script, which aids in confirming any crashes identified by the in-process fuzzer. This simple fuzzer operates by flipping bits and bytes in inactive connections, lacking coverage or injection, yet it serves effectively as a demonstration and is stateful. It requires only Python and Frida to operate, eliminating the need for additional modules or installations. Built upon the frizzer codebase, it's advisable to establish a virtual Python environment for optimal performance with frizzer. Notably, with the introduction of the iPhone XR/Xs, the PAC (Pointer Authentication Code) feature has been implemented. This advancement underscores the necessity for continuous adaptation of fuzzing tools like ToothPicker to keep pace with evolving iOS security measures.

API Access

Has API

API Access

Has API

Screenshots View All

Screenshots View All

Integrations

Atheris
C
C++
ClusterFuzz
Fuzzbuzz
Google ClusterFuzz
Jazzer
Python

Integrations

Atheris
C
C++
ClusterFuzz
Fuzzbuzz
Google ClusterFuzz
Jazzer
Python

Pricing Details

Free
Free Trial
Free Version

Pricing Details

Free
Free Trial
Free Version

Deployment

Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook

Deployment

Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook

Customer Support

Business Hours
Live Rep (24/7)
Online Support

Customer Support

Business Hours
Live Rep (24/7)
Online Support

Types of Training

Training Docs
Webinars
Live Training (Online)
In Person

Types of Training

Training Docs
Webinars
Live Training (Online)
In Person

Vendor Details

Company Name

LLVM Project

Founded

2003

Website

llvm.org/docs/LibFuzzer.html

Vendor Details

Company Name

Secure Mobile Networking Lab

Website

github.com/seemoo-lab/toothpicker

Product Features

Product Features

Alternatives

Atheris Reviews

Atheris

Google

Alternatives

Atheris Reviews

Atheris

Google
afl-unicorn Reviews

afl-unicorn

Battelle
LibFuzzer Reviews

LibFuzzer

LLVM Project
go-fuzz Reviews

go-fuzz

dvyukov
syzkaller Reviews

syzkaller

Google
Jazzer Reviews

Jazzer

Code Intelligence
Jazzer Reviews

Jazzer

Code Intelligence