Average Ratings 0 Ratings

Total
ease
features
design
support

No User Reviews. Be the first to provide a review:

Write a Review

Average Ratings 0 Ratings

Total
ease
features
design
support

No User Reviews. Be the first to provide a review:

Write a Review

Description

LMCache is an innovative open-source Knowledge Delivery Network (KDN) that functions as a caching layer for serving large language models, enhancing inference speeds by allowing the reuse of key-value (KV) caches during repeated or overlapping calculations. This system facilitates rapid prompt caching, enabling LLMs to "prefill" recurring text just once, subsequently reusing those saved KV caches in various positions across different serving instances. By implementing this method, the time required to generate the first token is minimized, GPU cycles are conserved, and throughput is improved, particularly in contexts like multi-round question answering and retrieval-augmented generation. Additionally, LMCache offers features such as KV cache offloading, which allows caches to be moved from GPU to CPU or disk, enables cache sharing among instances, and supports disaggregated prefill to optimize resource efficiency. It works seamlessly with inference engines like vLLM and TGI, and is designed to accommodate compressed storage formats, blending techniques for cache merging, and a variety of backend storage solutions. Overall, the architecture of LMCache is geared toward maximizing performance and efficiency in language model inference applications.

Description

RAGFlow is a publicly available Retrieval-Augmented Generation (RAG) system that improves the process of information retrieval by integrating Large Language Models (LLMs) with advanced document comprehension. This innovative tool presents a cohesive RAG workflow that caters to organizations of all sizes, delivering accurate question-answering functionalities supported by credible citations derived from a range of intricately formatted data. Its notable features comprise template-driven chunking, the ability to work with diverse data sources, and the automation of RAG orchestration, making it a versatile solution for enhancing data-driven insights. Additionally, RAGFlow's design promotes ease of use, ensuring that users can efficiently access relevant information in a seamless manner.

API Access

Has API

API Access

Has API

Screenshots View All

Screenshots View All

Integrations

Docker
Elestio

Integrations

Docker
Elestio

Pricing Details

Free
Free Trial
Free Version

Pricing Details

Free
Free Trial
Free Version

Deployment

Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook

Deployment

Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook

Customer Support

Business Hours
Live Rep (24/7)
Online Support

Customer Support

Business Hours
Live Rep (24/7)
Online Support

Types of Training

Training Docs
Webinars
Live Training (Online)
In Person

Types of Training

Training Docs
Webinars
Live Training (Online)
In Person

Vendor Details

Company Name

LMCache

Country

United States

Website

lmcache.ai/

Vendor Details

Company Name

RAGFlow

Website

ragflow.io

Alternatives

Alternatives

PrimoCache Reviews

PrimoCache

Romex Software
DeepSeek-V2 Reviews

DeepSeek-V2

DeepSeek