Average Ratings 0 Ratings
Average Ratings 0 Ratings
Description
LLaMA-Factory is an innovative open-source platform aimed at simplifying and improving the fine-tuning process for more than 100 Large Language Models (LLMs) and Vision-Language Models (VLMs). It accommodates a variety of fine-tuning methods such as Low-Rank Adaptation (LoRA), Quantized LoRA (QLoRA), and Prefix-Tuning, empowering users to personalize models with ease. The platform has shown remarkable performance enhancements; for example, its LoRA tuning achieves training speeds that are up to 3.7 times faster along with superior Rouge scores in advertising text generation tasks when compared to conventional techniques. Built with flexibility in mind, LLaMA-Factory's architecture supports an extensive array of model types and configurations. Users can seamlessly integrate their datasets and make use of the platform’s tools for optimized fine-tuning outcomes. Comprehensive documentation and a variety of examples are available to guide users through the fine-tuning process with confidence. Additionally, this platform encourages collaboration and sharing of techniques among the community, fostering an environment of continuous improvement and innovation.
Description
Ludwig serves as a low-code platform specifically designed for the development of tailored AI models, including large language models (LLMs) and various deep neural networks. With Ludwig, creating custom models becomes a straightforward task; you only need a simple declarative YAML configuration file to train an advanced LLM using your own data. It offers comprehensive support for learning across multiple tasks and modalities. The framework includes thorough configuration validation to identify invalid parameter combinations and avert potential runtime errors. Engineered for scalability and performance, it features automatic batch size determination, distributed training capabilities (including DDP and DeepSpeed), parameter-efficient fine-tuning (PEFT), 4-bit quantization (QLoRA), and the ability to handle larger-than-memory datasets. Users enjoy expert-level control, allowing them to manage every aspect of their models, including activation functions. Additionally, Ludwig facilitates hyperparameter optimization, offers insights into explainability, and provides detailed metric visualizations. Its modular and extensible architecture enables users to experiment with various model designs, tasks, features, and modalities with minimal adjustments in the configuration, making it feel like a set of building blocks for deep learning innovations. Ultimately, Ludwig empowers developers to push the boundaries of AI model creation while maintaining ease of use.
API Access
Has API
API Access
Has API
Integrations
MLflow
TensorBoard
Aim
Alpaca
Comet
DeepSeek
Gemma
Kubernetes
Llama
Llama 2
Integrations
MLflow
TensorBoard
Aim
Alpaca
Comet
DeepSeek
Gemma
Kubernetes
Llama
Llama 2
Pricing Details
Free
Free Trial
Free Version
Pricing Details
No price information available.
Free Trial
Free Version
Deployment
Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook
Deployment
Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook
Customer Support
Business Hours
Live Rep (24/7)
Online Support
Customer Support
Business Hours
Live Rep (24/7)
Online Support
Types of Training
Training Docs
Webinars
Live Training (Online)
In Person
Types of Training
Training Docs
Webinars
Live Training (Online)
In Person
Vendor Details
Company Name
hoshi-hiyouga
Website
github.com/hiyouga/LLaMA-Factory
Vendor Details
Company Name
Uber AI
Founded
2016
Country
United States
Website
ludwig.ai/latest/
Product Features
Product Features
Machine Learning
Deep Learning
ML Algorithm Library
Model Training
Natural Language Processing (NLP)
Predictive Modeling
Statistical / Mathematical Tools
Templates
Visualization