Average Ratings 0 Ratings
Average Ratings 0 Ratings
Description
Keepsake is a Python library that is open-source and specifically designed for managing version control in machine learning experiments and models. It allows users to automatically monitor various aspects such as code, hyperparameters, training datasets, model weights, performance metrics, and Python dependencies, ensuring comprehensive documentation and reproducibility of the entire machine learning process. By requiring only minimal code changes, Keepsake easily integrates into existing workflows, permitting users to maintain their usual training routines while it automatically archives code and model weights to storage solutions like Amazon S3 or Google Cloud Storage. This capability simplifies the process of retrieving code and weights from previous checkpoints, which is beneficial for re-training or deploying models. Furthermore, Keepsake is compatible with a range of machine learning frameworks, including TensorFlow, PyTorch, scikit-learn, and XGBoost, enabling efficient saving of files and dictionaries. In addition to these features, it provides tools for experiment comparison, allowing users to assess variations in parameters, metrics, and dependencies across different experiments, enhancing the overall analysis and optimization of machine learning projects. Overall, Keepsake streamlines the experimentation process, making it easier for practitioners to manage and evolve their machine learning workflows effectively.
Description
TensorBoard serves as a robust visualization platform within TensorFlow, specifically crafted to aid in the experimentation process of machine learning. It allows users to monitor and illustrate various metrics, such as loss and accuracy, while also offering insights into the model architecture through visual representations of its operations and layers. Users can observe the evolution of weights, biases, and other tensors via histograms over time, and it also allows for the projection of embeddings into a more manageable lower-dimensional space, along with the capability to display various forms of data, including images, text, and audio. Beyond these visualization features, TensorBoard includes profiling tools that help streamline and enhance the performance of TensorFlow applications. Collectively, these functionalities equip practitioners with essential tools for understanding, troubleshooting, and refining their TensorFlow projects, ultimately improving the efficiency of the machine learning process. In the realm of machine learning, accurate measurement is crucial for enhancement, and TensorBoard fulfills this need by supplying the necessary metrics and visual insights throughout the workflow. This platform not only tracks various experimental metrics but also facilitates the visualization of complex model structures and the dimensionality reduction of embeddings, reinforcing its importance in the machine learning toolkit.
API Access
Has API
API Access
Has API
Integrations
TensorFlow
Amazon S3
Dataoorts GPU Cloud
GitHub
Google Cloud Storage
Google Colab
Intel Tiber AI Studio
JSON
LLaMA-Factory
Ludwig
Integrations
TensorFlow
Amazon S3
Dataoorts GPU Cloud
GitHub
Google Cloud Storage
Google Colab
Intel Tiber AI Studio
JSON
LLaMA-Factory
Ludwig
Pricing Details
Free
Free Trial
Free Version
Pricing Details
Free
Free Trial
Free Version
Deployment
Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook
Deployment
Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook
Customer Support
Business Hours
Live Rep (24/7)
Online Support
Customer Support
Business Hours
Live Rep (24/7)
Online Support
Types of Training
Training Docs
Webinars
Live Training (Online)
In Person
Types of Training
Training Docs
Webinars
Live Training (Online)
In Person
Vendor Details
Company Name
Replicate
Country
United States
Website
keepsake.ai/
Vendor Details
Company Name
Tensorflow
Country
United States
Website
www.tensorflow.org/tensorboard
Product Features
Machine Learning
Deep Learning
ML Algorithm Library
Model Training
Natural Language Processing (NLP)
Predictive Modeling
Statistical / Mathematical Tools
Templates
Visualization
Version Control
Branch Creation / Deletion
Centralized Version History
Code Review
Code Version Management
Collaboration Tools
Compare / Merge Branches
Digital Asset / Binary File Storage
Isolated Code Branches
Option to Revert to Previous
Pull Requests
Roles / Permissions