Average Ratings 0 Ratings
Average Ratings 0 Ratings
Description
Kedro serves as a robust framework for establishing clean data science practices. By integrating principles from software engineering, it enhances the efficiency of machine-learning initiatives. Within a Kedro project, you will find a structured approach to managing intricate data workflows and machine-learning pipelines. This allows you to minimize the time spent on cumbersome implementation tasks and concentrate on addressing innovative challenges. Kedro also standardizes the creation of data science code, fostering effective collaboration among team members in problem-solving endeavors. Transitioning smoothly from development to production becomes effortless with exploratory code that can evolve into reproducible, maintainable, and modular experiments. Additionally, Kedro features a set of lightweight data connectors designed to facilitate the saving and loading of data across various file formats and storage systems, making data management more versatile and user-friendly. Ultimately, this framework empowers data scientists to work more effectively and with greater confidence in their projects.
Description
The RAPIDS software library suite, designed on CUDA-X AI, empowers users to run comprehensive data science and analytics workflows entirely on GPUs. It utilizes NVIDIA® CUDA® primitives for optimizing low-level computations while providing user-friendly Python interfaces that leverage GPU parallelism and high-speed memory access. Additionally, RAPIDS emphasizes essential data preparation processes tailored for analytics and data science, featuring a familiar DataFrame API that seamlessly integrates with various machine learning algorithms to enhance pipeline efficiency without incurring the usual serialization overhead. Moreover, it supports multi-node and multi-GPU setups, enabling significantly faster processing and training on considerably larger datasets. By incorporating RAPIDS, you can enhance your Python data science workflows with minimal code modifications and without the need to learn any new tools. This approach not only streamlines the model iteration process but also facilitates more frequent deployments, ultimately leading to improved machine learning model accuracy. As a result, RAPIDS significantly transforms the landscape of data science, making it more efficient and accessible.
API Access
Has API
API Access
Has API
Integrations
Apache Spark
Plotly Dash
Activeeon ProActive
Amazon SageMaker
Apache Airflow
Capital One Spark Business Banking
Dask
Databricks Data Intelligence Platform
Docker
Domino Enterprise MLOps Platform
Integrations
Apache Spark
Plotly Dash
Activeeon ProActive
Amazon SageMaker
Apache Airflow
Capital One Spark Business Banking
Dask
Databricks Data Intelligence Platform
Docker
Domino Enterprise MLOps Platform
Pricing Details
Free
Free Trial
Free Version
Pricing Details
No price information available.
Free Trial
Free Version
Deployment
Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook
Deployment
Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook
Customer Support
Business Hours
Live Rep (24/7)
Online Support
Customer Support
Business Hours
Live Rep (24/7)
Online Support
Types of Training
Training Docs
Webinars
Live Training (Online)
In Person
Types of Training
Training Docs
Webinars
Live Training (Online)
In Person
Vendor Details
Company Name
Kedro
Website
kedro.org
Vendor Details
Company Name
NVIDIA
Founded
1993
Country
United States
Website
developer.nvidia.com/rapids
Product Features
Data Science
Access Control
Advanced Modeling
Audit Logs
Data Discovery
Data Ingestion
Data Preparation
Data Visualization
Model Deployment
Reports
Product Features
Data Science
Access Control
Advanced Modeling
Audit Logs
Data Discovery
Data Ingestion
Data Preparation
Data Visualization
Model Deployment
Reports