Average Ratings 0 Ratings

Total
ease
features
design
support

No User Reviews. Be the first to provide a review:

Write a Review

Average Ratings 1 Rating

Total
ease
features
design
support

Description

Create, execute, and oversee AI models while enhancing decision-making at scale across any cloud infrastructure. IBM Watson Studio enables you to implement AI seamlessly anywhere as part of the IBM Cloud Pak® for Data, which is the comprehensive data and AI platform from IBM. Collaborate across teams, streamline the management of the AI lifecycle, and hasten the realization of value with a versatile multicloud framework. You can automate the AI lifecycles using ModelOps pipelines and expedite data science development through AutoAI. Whether preparing or constructing models, you have the option to do so visually or programmatically. Deploying and operating models is made simple with one-click integration. Additionally, promote responsible AI governance by ensuring your models are fair and explainable to strengthen business strategies. Leverage open-source frameworks such as PyTorch, TensorFlow, and scikit-learn to enhance your projects. Consolidate development tools, including leading IDEs, Jupyter notebooks, JupyterLab, and command-line interfaces, along with programming languages like Python, R, and Scala. Through the automation of AI lifecycle management, IBM Watson Studio empowers you to build and scale AI solutions with an emphasis on trust and transparency, ultimately leading to improved organizational performance and innovation.

Description

Effortlessly switch between eager and graph modes using TorchScript, while accelerating your journey to production with TorchServe. The torch-distributed backend facilitates scalable distributed training and enhances performance optimization for both research and production environments. A comprehensive suite of tools and libraries enriches the PyTorch ecosystem, supporting development across fields like computer vision and natural language processing. Additionally, PyTorch is compatible with major cloud platforms, simplifying development processes and enabling seamless scaling. You can easily choose your preferences and execute the installation command. The stable version signifies the most recently tested and endorsed iteration of PyTorch, which is typically adequate for a broad range of users. For those seeking the cutting-edge, a preview is offered, featuring the latest nightly builds of version 1.10, although these may not be fully tested or supported. It is crucial to verify that you meet all prerequisites, such as having numpy installed, based on your selected package manager. Anaconda is highly recommended as the package manager of choice, as it effectively installs all necessary dependencies, ensuring a smooth installation experience for users. This comprehensive approach not only enhances productivity but also ensures a robust foundation for development.

API Access

Has API

API Access

Has API

Screenshots View All

Screenshots View All

Integrations

Alibaba Cloud
Amazon SageMaker Model Building
Amazon SageMaker Studio
Cameralyze
CodeQwen
Daft
DagsHub
Google Cloud Platform
IBM ECM
IBM watsonx Assistant
Intel Open Edge Platform
Microsoft Azure
NVIDIA TensorRT
NodeShift
PaliGemma 2
PostgresML
Runyour AI
Vectice
Zepl
voyage-3-large

Integrations

Alibaba Cloud
Amazon SageMaker Model Building
Amazon SageMaker Studio
Cameralyze
CodeQwen
Daft
DagsHub
Google Cloud Platform
IBM ECM
IBM watsonx Assistant
Intel Open Edge Platform
Microsoft Azure
NVIDIA TensorRT
NodeShift
PaliGemma 2
PostgresML
Runyour AI
Vectice
Zepl
voyage-3-large

Pricing Details

No price information available.
Free Trial
Free Version

Pricing Details

No price information available.
Free Trial
Free Version

Deployment

Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook

Deployment

Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook

Customer Support

Business Hours
Live Rep (24/7)
Online Support

Customer Support

Business Hours
Live Rep (24/7)
Online Support

Types of Training

Training Docs
Webinars
Live Training (Online)
In Person

Types of Training

Training Docs
Webinars
Live Training (Online)
In Person

Vendor Details

Company Name

IBM

Founded

1911

Country

United States

Website

www.ibm.com/products/watson-studio

Vendor Details

Company Name

PyTorch

Founded

2016

Website

pytorch.org

Product Features

Data Mining

Data Extraction
Data Visualization
Fraud Detection
Linked Data Management
Machine Learning
Predictive Modeling
Semantic Search
Statistical Analysis
Text Mining

Data Preparation

Collaboration Tools
Data Access
Data Blending
Data Cleansing
Data Governance
Data Mashup
Data Modeling
Data Transformation
Machine Learning
Visual User Interface

Data Science

Access Control
Advanced Modeling
Audit Logs
Data Discovery
Data Ingestion
Data Preparation
Data Visualization
Model Deployment
Reports

Machine Learning

Deep Learning
ML Algorithm Library
Model Training
Natural Language Processing (NLP)
Predictive Modeling
Statistical / Mathematical Tools
Templates
Visualization

Predictive Analytics

AI / Machine Learning
Benchmarking
Data Blending
Data Mining
Demand Forecasting
For Education
For Healthcare
Modeling & Simulation
Sentiment Analysis

Product Features

Machine Learning

Deep Learning
ML Algorithm Library
Model Training
Natural Language Processing (NLP)
Predictive Modeling
Statistical / Mathematical Tools
Templates
Visualization

Alternatives

Alternatives

Core ML Reviews

Core ML

Apple
MXNet Reviews

MXNet

The Apache Software Foundation
Create ML Reviews

Create ML

Apple