Average Ratings 0 Ratings

Total
ease
features
design
support

No User Reviews. Be the first to provide a review:

Write a Review

Average Ratings 0 Ratings

Total
ease
features
design
support

No User Reviews. Be the first to provide a review:

Write a Review

Description

Enhance the efficiency of your deep learning projects and reduce the time it takes to realize value through AI model training and inference. As technology continues to improve in areas like computation, algorithms, and data accessibility, more businesses are embracing deep learning to derive and expand insights in fields such as speech recognition, natural language processing, and image classification. This powerful technology is capable of analyzing text, images, audio, and video on a large scale, allowing for the generation of patterns used in recommendation systems, sentiment analysis, financial risk assessments, and anomaly detection. The significant computational resources needed to handle neural networks stem from their complexity, including multiple layers and substantial training data requirements. Additionally, organizations face challenges in demonstrating the effectiveness of deep learning initiatives that are executed in isolation, which can hinder broader adoption and integration. The shift towards more collaborative approaches may help mitigate these issues and enhance the overall impact of deep learning strategies within companies.

Description

You can develop on your laptop, then scale the same Python code elastically across hundreds or GPUs on any cloud. Ray converts existing Python concepts into the distributed setting, so any serial application can be easily parallelized with little code changes. With a strong ecosystem distributed libraries, scale compute-heavy machine learning workloads such as model serving, deep learning, and hyperparameter tuning. Scale existing workloads (e.g. Pytorch on Ray is easy to scale by using integrations. Ray Tune and Ray Serve native Ray libraries make it easier to scale the most complex machine learning workloads like hyperparameter tuning, deep learning models training, reinforcement learning, and training deep learning models. In just 10 lines of code, you can get started with distributed hyperparameter tune. Creating distributed apps is hard. Ray is an expert in distributed execution.

API Access

Has API

API Access

Has API

Screenshots View All

Screenshots View All

Integrations

AUSIS
Amazon EC2 Trn2 Instances
Amazon SageMaker
Amazon Web Services (AWS)
Anyscale
Apache Airflow
Dask
Databricks Data Intelligence Platform
Feast
Flyte
Google Cloud Platform
Google Kubernetes Engine (GKE)
IBM Intelligent Video Analytics
LanceDB
MLflow
PyTorch
Python
Snowflake
TensorFlow
Union Cloud

Integrations

AUSIS
Amazon EC2 Trn2 Instances
Amazon SageMaker
Amazon Web Services (AWS)
Anyscale
Apache Airflow
Dask
Databricks Data Intelligence Platform
Feast
Flyte
Google Cloud Platform
Google Kubernetes Engine (GKE)
IBM Intelligent Video Analytics
LanceDB
MLflow
PyTorch
Python
Snowflake
TensorFlow
Union Cloud

Pricing Details

No price information available.
Free Trial
Free Version

Pricing Details

Free
Free Trial
Free Version

Deployment

Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook

Deployment

Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook

Customer Support

Business Hours
Live Rep (24/7)
Online Support

Customer Support

Business Hours
Live Rep (24/7)
Online Support

Types of Training

Training Docs
Webinars
Live Training (Online)
In Person

Types of Training

Training Docs
Webinars
Live Training (Online)
In Person

Vendor Details

Company Name

IBM

Founded

1911

Country

United States

Website

www.ibm.com/products/deep-learning-platform

Vendor Details

Company Name

Anyscale

Founded

2019

Country

United States

Website

ray.io

Product Features

Deep Learning

Convolutional Neural Networks
Document Classification
Image Segmentation
ML Algorithm Library
Model Training
Neural Network Modeling
Self-Learning
Visualization

Machine Learning

Deep Learning
ML Algorithm Library
Model Training
Natural Language Processing (NLP)
Predictive Modeling
Statistical / Mathematical Tools
Templates
Visualization

Product Features

Deep Learning

Convolutional Neural Networks
Document Classification
Image Segmentation
ML Algorithm Library
Model Training
Neural Network Modeling
Self-Learning
Visualization

Machine Learning

Deep Learning
ML Algorithm Library
Model Training
Natural Language Processing (NLP)
Predictive Modeling
Statistical / Mathematical Tools
Templates
Visualization

Alternatives

Vertex AI Reviews

Vertex AI

Google

Alternatives

AWS Neuron Reviews

AWS Neuron

Amazon Web Services
AWS Neuron Reviews

AWS Neuron

Amazon Web Services
Vertex AI Reviews

Vertex AI

Google