Average Ratings 0 Ratings
Average Ratings 0 Ratings
Description
Distributed AI represents a computing approach that eliminates the necessity of transferring large data sets, enabling data analysis directly at its origin. Developed by IBM Research, the Distributed AI APIs consist of a suite of RESTful web services equipped with data and AI algorithms tailored for AI applications in hybrid cloud, edge, and distributed computing scenarios. Each API within the Distributed AI framework tackles the unique challenges associated with deploying AI technologies in such environments. Notably, these APIs do not concentrate on fundamental aspects of establishing and implementing AI workflows, such as model training or serving. Instead, developers can utilize their preferred open-source libraries like TensorFlow or PyTorch for these tasks. Afterward, you can encapsulate your application, which includes the entire AI pipeline, into containers for deployment at various distributed sites. Additionally, leveraging container orchestration tools like Kubernetes or OpenShift can greatly enhance the automation of the deployment process, ensuring efficiency and scalability in managing distributed AI applications. This innovative approach ultimately streamlines the integration of AI into diverse infrastructures, fostering smarter solutions.
Description
TorchMetrics comprises over 90 implementations of metrics designed for PyTorch, along with a user-friendly API that allows for the creation of custom metrics. It provides a consistent interface that enhances reproducibility while minimizing redundant code. The library is suitable for distributed training and has undergone thorough testing to ensure reliability. It features automatic batch accumulation and seamless synchronization across multiple devices. You can integrate TorchMetrics into any PyTorch model or utilize it within PyTorch Lightning for added advantages, ensuring that your data aligns with the same device as your metrics at all times. Additionally, you can directly log Metric objects in Lightning, further reducing boilerplate code. Much like torch.nn, the majority of metrics are available in both class-based and functional formats. The functional versions consist of straightforward Python functions that accept torch.tensors as inputs and yield the corresponding metric as a torch.tensor output. Virtually all functional metrics come with an equivalent class-based metric, providing users with flexible options for implementation. This versatility allows developers to choose the approach that best fits their coding style and project requirements.
API Access
Has API
API Access
Has API
Integrations
PyTorch
Kubernetes
Lightning AI
Red Hat OpenShift
TensorFlow
Integrations
PyTorch
Kubernetes
Lightning AI
Red Hat OpenShift
TensorFlow
Pricing Details
No price information available.
Free Trial
Free Version
Pricing Details
Free
Free Trial
Free Version
Deployment
Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook
Deployment
Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook
Customer Support
Business Hours
Live Rep (24/7)
Online Support
Customer Support
Business Hours
Live Rep (24/7)
Online Support
Types of Training
Training Docs
Webinars
Live Training (Online)
In Person
Types of Training
Training Docs
Webinars
Live Training (Online)
In Person
Vendor Details
Company Name
IBM
Country
United States
Website
developer.ibm.com/apis/catalog/edgeai--distributed-ai-apis/Introduction/
Vendor Details
Company Name
TorchMetrics
Country
United States
Website
torchmetrics.readthedocs.io/en/stable/
Product Features
Product Features
Application Development
Access Controls/Permissions
Code Assistance
Code Refactoring
Collaboration Tools
Compatibility Testing
Data Modeling
Debugging
Deployment Management
Graphical User Interface
Mobile Development
No-Code
Reporting/Analytics
Software Development
Source Control
Testing Management
Version Control
Web App Development