Average Ratings 0 Ratings

Total
ease
features
design
support

No User Reviews. Be the first to provide a review:

Write a Review

Average Ratings 0 Ratings

Total
ease
features
design
support

No User Reviews. Be the first to provide a review:

Write a Review

Description

Boost the pace of AI innovation through cloud-native data integration offered by IBM Cloud Pak for Data. With AI-driven data integration capabilities accessible from anywhere, the effectiveness of your AI and analytics is directly linked to the quality of the data supporting them. Utilizing a modern container-based architecture, IBM® DataStage® for IBM Cloud Pak® for Data ensures the delivery of superior data. This solution merges top-tier data integration with DataOps, governance, and analytics within a unified data and AI platform. By automating administrative tasks, it helps in lowering total cost of ownership (TCO). The platform's AI-based design accelerators, along with ready-to-use integrations with DataOps and data science services, significantly hasten AI advancements. Furthermore, its parallelism and multicloud integration capabilities enable the delivery of reliable data on a large scale across diverse hybrid or multicloud settings. Additionally, you can efficiently manage the entire data and analytics lifecycle on the IBM Cloud Pak for Data platform, which encompasses a variety of services such as data science, event messaging, data virtualization, and data warehousing, all bolstered by a parallel engine and automated load balancing features. This comprehensive approach ensures that your organization stays ahead in the rapidly evolving landscape of data and AI.

Description

Today, there is a considerable amount of discussion surrounding how top-tier companies are leveraging big data to achieve a competitive edge. Your organization aims to join the ranks of these industry leaders. Nevertheless, the truth is that more than 80% of big data initiatives fail to reach production due to the intricate and resource-heavy nature of implementation, often extending over months or even years. The technology involved is multifaceted, and finding individuals with the requisite skills can be prohibitively expensive or nearly impossible. Moreover, automating the entire data workflow from its source to its end use is essential for success. This includes automating the transition of data and workloads from outdated Data Warehouse systems to modern big data platforms, as well as managing and orchestrating intricate data pipelines in a live environment. In contrast, alternative methods like piecing together various point solutions or engaging in custom development tend to be costly, lack flexibility, consume excessive time, and necessitate specialized expertise to build and sustain. Ultimately, adopting a more streamlined approach to big data management can not only reduce costs but also enhance operational efficiency.

API Access

Has API

API Access

Has API

Screenshots View All

Screenshots View All

Integrations

AWS Marketplace
ActiveBatch Workload Automation
BMC AMI Ops Automation for Capping
FairCom DB
FairCom EDGE
IBM Cloud Pak for Applications
IBM Watson Studio
IRI FieldShield
MettleCI
Origina
Pantomath
Stonebranch

Integrations

AWS Marketplace
ActiveBatch Workload Automation
BMC AMI Ops Automation for Capping
FairCom DB
FairCom EDGE
IBM Cloud Pak for Applications
IBM Watson Studio
IRI FieldShield
MettleCI
Origina
Pantomath
Stonebranch

Pricing Details

No price information available.
Free Trial
Free Version

Pricing Details

No price information available.
Free Trial
Free Version

Deployment

Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook

Deployment

Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook

Customer Support

Business Hours
Live Rep (24/7)
Online Support

Customer Support

Business Hours
Live Rep (24/7)
Online Support

Types of Training

Training Docs
Webinars
Live Training (Online)
In Person

Types of Training

Training Docs
Webinars
Live Training (Online)
In Person

Vendor Details

Company Name

IBM

Founded

1911

Country

United States

Website

www.ibm.com/products/infosphere-datastage

Vendor Details

Company Name

Infoworks

Founded

2014

Country

United States

Website

www.infoworks.io

Product Features

Big Data

Collaboration
Data Blends
Data Cleansing
Data Mining
Data Visualization
Data Warehousing
High Volume Processing
No-Code Sandbox
Predictive Analytics
Templates

Data Lineage

Database Change Impact Analysis
Filter Lineage Links
Implicit Connection Discovery
Lineage Object Filtering
Object Lineage Tracing
Point-in-Time Visibility
User/Client/Target Connection Visibility
Visual & Text Lineage View

ETL

Data Analysis
Data Filtering
Data Quality Control
Job Scheduling
Match & Merge
Metadata Management
Non-Relational Transformations
Version Control

Product Features

Big Data

Collaboration
Data Blends
Data Cleansing
Data Mining
Data Visualization
Data Warehousing
High Volume Processing
No-Code Sandbox
Predictive Analytics
Templates

Alternatives

IRI Data Manager Reviews

IRI Data Manager

IRI, The CoSort Company

Alternatives

IRI Voracity Reviews

IRI Voracity

IRI, The CoSort Company
Pentaho Reviews

Pentaho

Hitachi Vantara
dbt Reviews

dbt

dbt Labs