Average Ratings 0 Ratings
Average Ratings 0 Ratings
Description
Originally created by Uber, Horovod aims to simplify and accelerate the process of distributed deep learning, significantly reducing model training durations from several days or weeks to mere hours or even minutes. By utilizing Horovod, users can effortlessly scale their existing training scripts to leverage the power of hundreds of GPUs with just a few lines of Python code. It offers flexibility for deployment, as it can be installed on local servers or seamlessly operated in various cloud environments such as AWS, Azure, and Databricks. In addition, Horovod is compatible with Apache Spark, allowing a cohesive integration of data processing and model training into one streamlined pipeline. Once set up, the infrastructure provided by Horovod supports model training across any framework, facilitating easy transitions between TensorFlow, PyTorch, MXNet, and potential future frameworks as the landscape of machine learning technologies continues to progress. This adaptability ensures that users can keep pace with the rapid advancements in the field without being locked into a single technology.
Description
ML.NET is a versatile, open-source machine learning framework that is free to use and compatible across platforms, enabling .NET developers to create tailored machine learning models using C# or F# while remaining within the .NET environment. This framework encompasses a wide range of machine learning tasks such as classification, regression, clustering, anomaly detection, and recommendation systems. Additionally, ML.NET seamlessly integrates with other renowned machine learning frameworks like TensorFlow and ONNX, which broadens the possibilities for tasks like image classification and object detection. It comes equipped with user-friendly tools such as Model Builder and the ML.NET CLI, leveraging Automated Machine Learning (AutoML) to streamline the process of developing, training, and deploying effective models. These innovative tools automatically analyze various algorithms and parameters to identify the most efficient model for specific use cases. Moreover, ML.NET empowers developers to harness the power of machine learning without requiring extensive expertise in the field.
API Access
Has API
API Access
Has API
Integrations
TensorFlow
.NET
Activeeon ProActive
Amazon Web Services (AWS)
Azure Databricks
Bing
C#
F#
Flyte
Google Cloud AutoML
Integrations
TensorFlow
.NET
Activeeon ProActive
Amazon Web Services (AWS)
Azure Databricks
Bing
C#
F#
Flyte
Google Cloud AutoML
Pricing Details
Free
Free Trial
Free Version
Pricing Details
Free
Free Trial
Free Version
Deployment
Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook
Deployment
Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook
Customer Support
Business Hours
Live Rep (24/7)
Online Support
Customer Support
Business Hours
Live Rep (24/7)
Online Support
Types of Training
Training Docs
Webinars
Live Training (Online)
In Person
Types of Training
Training Docs
Webinars
Live Training (Online)
In Person
Vendor Details
Company Name
Horovod
Website
horovod.ai/
Vendor Details
Company Name
Microsoft
Founded
1975
Country
United States
Website
dotnet.microsoft.com/en-us/apps/ai/ml-dotnet
Product Features
Deep Learning
Convolutional Neural Networks
Document Classification
Image Segmentation
ML Algorithm Library
Model Training
Neural Network Modeling
Self-Learning
Visualization
Product Features
Machine Learning
Deep Learning
ML Algorithm Library
Model Training
Natural Language Processing (NLP)
Predictive Modeling
Statistical / Mathematical Tools
Templates
Visualization