Average Ratings 0 Ratings

Total
ease
features
design
support

No User Reviews. Be the first to provide a review:

Write a Review

Average Ratings 0 Ratings

Total
ease
features
design
support

No User Reviews. Be the first to provide a review:

Write a Review

Description

Originally created by Uber, Horovod aims to simplify and accelerate the process of distributed deep learning, significantly reducing model training durations from several days or weeks to mere hours or even minutes. By utilizing Horovod, users can effortlessly scale their existing training scripts to leverage the power of hundreds of GPUs with just a few lines of Python code. It offers flexibility for deployment, as it can be installed on local servers or seamlessly operated in various cloud environments such as AWS, Azure, and Databricks. In addition, Horovod is compatible with Apache Spark, allowing a cohesive integration of data processing and model training into one streamlined pipeline. Once set up, the infrastructure provided by Horovod supports model training across any framework, facilitating easy transitions between TensorFlow, PyTorch, MXNet, and potential future frameworks as the landscape of machine learning technologies continues to progress. This adaptability ensures that users can keep pace with the rapid advancements in the field without being locked into a single technology.

Description

Distributed AI represents a computing approach that eliminates the necessity of transferring large data sets, enabling data analysis directly at its origin. Developed by IBM Research, the Distributed AI APIs consist of a suite of RESTful web services equipped with data and AI algorithms tailored for AI applications in hybrid cloud, edge, and distributed computing scenarios. Each API within the Distributed AI framework tackles the unique challenges associated with deploying AI technologies in such environments. Notably, these APIs do not concentrate on fundamental aspects of establishing and implementing AI workflows, such as model training or serving. Instead, developers can utilize their preferred open-source libraries like TensorFlow or PyTorch for these tasks. Afterward, you can encapsulate your application, which includes the entire AI pipeline, into containers for deployment at various distributed sites. Additionally, leveraging container orchestration tools like Kubernetes or OpenShift can greatly enhance the automation of the deployment process, ensuring efficiency and scalability in managing distributed AI applications. This innovative approach ultimately streamlines the integration of AI into diverse infrastructures, fostering smarter solutions.

API Access

Has API

API Access

Has API

Screenshots View All

Screenshots View All

Integrations

PyTorch
TensorFlow
Activeeon ProActive
Amazon Web Services (AWS)
Azure Databricks
Flyte
Keras
Kubernetes
MXNet
Microsoft Azure
Python
Red Hat OpenShift

Integrations

PyTorch
TensorFlow
Activeeon ProActive
Amazon Web Services (AWS)
Azure Databricks
Flyte
Keras
Kubernetes
MXNet
Microsoft Azure
Python
Red Hat OpenShift

Pricing Details

Free
Free Trial
Free Version

Pricing Details

No price information available.
Free Trial
Free Version

Deployment

Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook

Deployment

Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook

Customer Support

Business Hours
Live Rep (24/7)
Online Support

Customer Support

Business Hours
Live Rep (24/7)
Online Support

Types of Training

Training Docs
Webinars
Live Training (Online)
In Person

Types of Training

Training Docs
Webinars
Live Training (Online)
In Person

Vendor Details

Company Name

Horovod

Website

horovod.ai/

Vendor Details

Company Name

IBM

Country

United States

Website

developer.ibm.com/apis/catalog/edgeai--distributed-ai-apis/Introduction/

Product Features

Deep Learning

Convolutional Neural Networks
Document Classification
Image Segmentation
ML Algorithm Library
Model Training
Neural Network Modeling
Self-Learning
Visualization

Alternatives

MXNet Reviews

MXNet

The Apache Software Foundation

Alternatives

Tinker Reviews

Tinker

Thinking Machines Lab
Caffe Reviews

Caffe

BAIR
AWS Neuron Reviews

AWS Neuron

Amazon Web Services
AWS Neuron Reviews

AWS Neuron

Amazon Web Services