Average Ratings 0 Ratings
Average Ratings 0 Ratings
Description
Gymnasium serves as a well-maintained alternative to OpenAI’s Gym library, offering a standardized API for reinforcement learning alongside a wide variety of reference environments. Its interface is designed to be user-friendly and pythonic, effectively accommodating a range of general RL challenges while also providing a compatibility layer for older Gym environments. Central to Gymnasium is the Env class, a robust Python construct that embodies the principles of a Markov Decision Process (MDP) as described in reinforcement learning theory. This essential class equips users with the capability to generate an initial state, transition through various states in response to actions, and visualize the environment effectively. In addition to the Env class, Gymnasium offers Wrapper classes that enhance or modify the environment, specifically targeting aspects like agent observations, rewards, and actions taken. With a collection of built-in environments and tools designed to ease the workload for researchers, Gymnasium is also widely supported by numerous training libraries, making it a versatile choice for those in the field. Its ongoing development ensures that it remains relevant and useful for evolving reinforcement learning applications.
Description
Qwen3-Coder is a versatile coding model that comes in various sizes, prominently featuring the 480B-parameter Mixture-of-Experts version with 35B active parameters, which naturally accommodates 256K-token contexts that can be extended to 1M tokens. This model achieves impressive performance that rivals Claude Sonnet 4, having undergone pre-training on 7.5 trillion tokens, with 70% of that being code, and utilizing synthetic data refined through Qwen2.5-Coder to enhance both coding skills and overall capabilities. Furthermore, the model benefits from post-training techniques that leverage extensive, execution-guided reinforcement learning, which facilitates the generation of diverse test cases across 20,000 parallel environments, thereby excelling in multi-turn software engineering tasks such as SWE-Bench Verified without needing test-time scaling. In addition to the model itself, the open-source Qwen Code CLI, derived from Gemini Code, empowers users to deploy Qwen3-Coder in dynamic workflows with tailored prompts and function calling protocols, while also offering smooth integration with Node.js, OpenAI SDKs, and environment variables. This comprehensive ecosystem supports developers in optimizing their coding projects effectively and efficiently.
API Access
Has API
API Access
Has API
Integrations
OpenAI
Alibaba Cloud
Gemini
Node.js
Python
Qwen2.5
SiliconFlow
opencode
Integrations
OpenAI
Alibaba Cloud
Gemini
Node.js
Python
Qwen2.5
SiliconFlow
opencode
Pricing Details
No price information available.
Free Trial
Free Version
Pricing Details
Free
Free Trial
Free Version
Deployment
Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook
Deployment
Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook
Customer Support
Business Hours
Live Rep (24/7)
Online Support
Customer Support
Business Hours
Live Rep (24/7)
Online Support
Types of Training
Training Docs
Webinars
Live Training (Online)
In Person
Types of Training
Training Docs
Webinars
Live Training (Online)
In Person
Vendor Details
Company Name
Gymnasium
Country
United States
Website
gymnasium.farama.org
Vendor Details
Company Name
Qwen
Founded
2023
Country
China
Website
qwenlm.github.io/blog/qwen3-coder/