Average Ratings 0 Ratings
Average Ratings 0 Ratings
Description
Organizations that choose a do-it-yourself method for implementing a graph database should anticipate a timeline of about 2 to 3 months to achieve a production-ready state. In contrast, with Graph Story’s managed services, your operational database can be set up in just minutes. Discover various graph use cases and explore a side-by-side analysis of self-hosting versus managed services. We can accommodate deployments in your existing infrastructure, whether it's on AWS, Azure, or Google Compute Engine, in any geographical location. If you require VPC peering or IP access restrictions, we can easily adapt to your needs. For those looking to create a proof of concept, initiating a single enterprise graph instance only takes a few clicks. Should you need to scale up to a high-availability, production-ready cluster on demand, we are prepared to assist! Our graph database management tools are designed to simplify your experience, allowing you to monitor CPU, memory, and disk usage effortlessly. You also have access to configurations, logs, and the ability to backup your database and restore snapshots whenever necessary. This level of flexibility ensures that your graph database management aligns perfectly with your operational requirements.
Description
HugeGraph is a high-performance and scalable graph database capable of managing billions of vertices and edges efficiently due to its robust OLTP capabilities. This database allows for seamless storage and querying, making it an excellent choice for complex data relationships. It adheres to the Apache TinkerPop 3 framework, enabling users to execute sophisticated graph queries using Gremlin, a versatile graph traversal language. Key features include Schema Metadata Management, which encompasses VertexLabel, EdgeLabel, PropertyKey, and IndexLabel, providing comprehensive control over graph structures. Additionally, it supports Multi-type Indexes that facilitate exact queries, range queries, and complex conditional queries. The platform also boasts a Plug-in Backend Store Driver Framework that currently supports various databases like RocksDB, Cassandra, ScyllaDB, HBase, and MySQL, while also allowing for easy integration of additional backend drivers as necessary. Moreover, HugeGraph integrates smoothly with Hadoop and Spark, enhancing its data processing capabilities. By drawing on the storage structure of Titan and the schema definitions from DataStax, HugeGraph offers a solid foundation for effective graph database management. This combination of features positions HugeGraph as a versatile and powerful solution for handling complex graph data scenarios.
API Access
Has API
API Access
Has API
Integrations
Amazon Web Services (AWS)
Google Cloud Platform
Google Compute Engine
Hadoop
Microsoft Azure
Spark
Integrations
Amazon Web Services (AWS)
Google Cloud Platform
Google Compute Engine
Hadoop
Microsoft Azure
Spark
Pricing Details
$299 per month
Free Trial
Free Version
Pricing Details
No price information available.
Free Trial
Free Version
Deployment
Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook
Deployment
Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook
Customer Support
Business Hours
Live Rep (24/7)
Online Support
Customer Support
Business Hours
Live Rep (24/7)
Online Support
Types of Training
Training Docs
Webinars
Live Training (Online)
In Person
Types of Training
Training Docs
Webinars
Live Training (Online)
In Person
Vendor Details
Company Name
Graph Story
Founded
2014
Country
United States
Website
www.graphstory.com
Vendor Details
Company Name
HugeGraph
Founded
2018
Website
github.com/hugegraph/hugegraph