Average Ratings 0 Ratings
Average Ratings 0 Ratings
Description
Discover a fresh library or dataset while working in a notebook environment. Streamline your preprocessing, training, or testing processes through an automated workflow. Transform your application into a functioning product by deploying it effectively. You have the flexibility to utilize notebooks, workflows, and deployments either together or on their own. Gradient is fully compatible with all major frameworks and libraries, ensuring seamless integration. Powered by Paperspace's exceptional GPU instances, Gradient allows you to accelerate your projects significantly. Enhance your development speed with integrated source control, connecting effortlessly to GitHub to oversee all your work and computing resources. Launch a GPU-enabled Jupyter Notebook right from your browser in mere seconds, using any library or framework of your choice. It's simple to invite collaborators or share a public link for your projects. This straightforward cloud workspace operates on free GPUs, allowing you to get started almost instantly with an easy-to-navigate notebook environment that's perfect for machine learning developers. Offering a robust and hassle-free setup with numerous features, it just works. Choose from pre-existing templates or integrate your own unique configurations, and take advantage of a free GPU to kickstart your projects!
Description
Introducing MinusX, a Chrome extension designed to streamline the operation of your analytics applications, providing the quickest method to derive insights from your data. With the ability to interoperate with MinusX, users can easily adjust or enhance their existing notebooks. Simply select a specific area, pose inquiries, or request modifications to your data. MinusX is compatible with popular analytics platforms such as Jupyter Notebooks, Metabase, Tableau, and more, allowing you to generate analyses and share outcomes with your team in real-time. Our advanced privacy settings ensure that any data shared is utilized solely for improving the accuracy of our models, with a strict policy against sharing your data with external parties. The seamless integration of MinusX into your existing tools means you can remain within your current workflow while addressing questions. Actionable tasks are prioritized as first-class entities, enabling MinusX to select the most appropriate action based on context. Presently, we support models like Claude Sonnet 3.5, GPT-4o, and GPT-4o mini, and we are actively developing a feature that will allow you to incorporate your own models for even greater customization. This adaptability ensures that MinusX can cater to a wide range of analytical needs and preferences.
API Access
Has API
API Access
Has API
Integrations
Jupyter Notebook
Claude Sonnet 3.5
Claude Sonnet 3.7
Flask Data
GPT-4o
GPT-4o mini
GitHub
Google Chrome
Google Colab
Google Sheets
Integrations
Jupyter Notebook
Claude Sonnet 3.5
Claude Sonnet 3.7
Flask Data
GPT-4o
GPT-4o mini
GitHub
Google Chrome
Google Colab
Google Sheets
Pricing Details
$8 per month
Free Trial
Free Version
Pricing Details
No price information available.
Free Trial
Free Version
Deployment
Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook
Deployment
Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook
Customer Support
Business Hours
Live Rep (24/7)
Online Support
Customer Support
Business Hours
Live Rep (24/7)
Online Support
Types of Training
Training Docs
Webinars
Live Training (Online)
In Person
Types of Training
Training Docs
Webinars
Live Training (Online)
In Person
Vendor Details
Company Name
Gradient
Website
gradient.run/
Vendor Details
Company Name
MinusX
Website
minusx.ai/
Product Features
Machine Learning
Deep Learning
ML Algorithm Library
Model Training
Natural Language Processing (NLP)
Predictive Modeling
Statistical / Mathematical Tools
Templates
Visualization
Product Features
Data Science
Access Control
Advanced Modeling
Audit Logs
Data Discovery
Data Ingestion
Data Preparation
Data Visualization
Model Deployment
Reports