Average Ratings 0 Ratings
Average Ratings 0 Ratings
Description
OSS-Fuzz provides ongoing fuzz testing for open source applications, a method renowned for identifying programming flaws. Such flaws, including buffer overflow vulnerabilities, can pose significant security risks. Through the implementation of guided in-process fuzzing on Chrome components, Google has discovered thousands of security weaknesses and stability issues, and now aims to extend this beneficial service to the open source community. The primary objective of OSS-Fuzz is to enhance the security and stability of frequently used open source software by integrating advanced fuzzing methodologies with a scalable and distributed framework. For projects that are ineligible for OSS-Fuzz, there are alternatives available, such as running personal instances of ClusterFuzz or ClusterFuzzLite. At present, OSS-Fuzz is compatible with languages including C/C++, Rust, Go, Python, and Java/JVM, with the possibility of supporting additional languages that are compatible with LLVM. Furthermore, OSS-Fuzz facilitates fuzzing for both x86_64 and i386 architecture builds, ensuring a broad range of applications can benefit from this innovative testing approach. With this initiative, we hope to build a safer software ecosystem for all users.
Description
Syzkaller functions as an unsupervised, coverage-guided fuzzer aimed at exploring vulnerabilities within kernel environments, offering support for various operating systems such as FreeBSD, Fuchsia, gVisor, Linux, NetBSD, OpenBSD, and Windows. Originally designed with a focus on fuzzing the Linux kernel, its capabilities have been expanded to encompass additional operating systems over time. When a kernel crash is identified within one of the virtual machines, syzkaller promptly initiates the reproduction of that crash. By default, it operates using four virtual machines for this reproduction process and subsequently works to minimize the program responsible for the crash. This reproduction phase can temporarily halt fuzzing activities, as all VMs may be occupied with reproducing the identified issues. The duration for reproducing a single crash can vary significantly, ranging from mere minutes to potentially an hour, depending on the complexity and reproducibility of the crash event. This ability to minimize and analyze crashes enhances the overall effectiveness of the fuzzing process, allowing for better identification of vulnerabilities in the kernel.
API Access
Has API
API Access
Has API
Integrations
Atheris
C
C++
ClusterFuzz
FreeBSD
Fuchsia Service Maintenance Software
GitHub
Go
Google Cloud Storage
Java
Integrations
Atheris
C
C++
ClusterFuzz
FreeBSD
Fuchsia Service Maintenance Software
GitHub
Go
Google Cloud Storage
Java
Pricing Details
Free
Free Trial
Free Version
Pricing Details
Free
Free Trial
Free Version
Deployment
Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook
Deployment
Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook
Customer Support
Business Hours
Live Rep (24/7)
Online Support
Customer Support
Business Hours
Live Rep (24/7)
Online Support
Types of Training
Training Docs
Webinars
Live Training (Online)
In Person
Types of Training
Training Docs
Webinars
Live Training (Online)
In Person
Vendor Details
Company Name
Country
United States
Website
github.com/google/oss-fuzz
Vendor Details
Company Name
Country
United States
Website
github.com/google/syzkaller