Average Ratings 0 Ratings

Total
ease
features
design
support

No User Reviews. Be the first to provide a review:

Write a Review

Average Ratings 0 Ratings

Total
ease
features
design
support

No User Reviews. Be the first to provide a review:

Write a Review

Description

ClusterFuzz serves as an expansive fuzzing framework designed to uncover security vulnerabilities and stability flaws in software applications. Employed by Google, it is utilized for testing all of its products and acts as the fuzzing engine for OSS-Fuzz. This infrastructure boasts a wide array of features that facilitate the seamless incorporation of fuzzing into the software development lifecycle. It offers fully automated processes for bug filing, triaging, and resolution across multiple issue tracking systems. The system supports a variety of coverage-guided fuzzing engines, optimizing results through ensemble fuzzing and diverse fuzzing methodologies. Additionally, it provides statistical insights for assessing fuzzer effectiveness and monitoring crash incidence rates. Users can navigate an intuitive web interface that simplifies the management of fuzzing activities and crash reviews. Furthermore, ClusterFuzz is compatible with various authentication systems via Firebase and includes capabilities for black-box fuzzing, minimizing test cases, and identifying regressions through bisection. In summary, this robust tool enhances software quality and security, making it invaluable for developers seeking to improve their applications.

Description

Go-fuzz serves as a coverage-guided fuzzing tool designed specifically for testing Go packages, making it particularly effective for those that handle intricate inputs, whether they are textual or binary in nature. This method of testing is crucial for strengthening systems that need to process data from potentially harmful sources, such as network interactions. Recently, go-fuzz has introduced initial support for fuzzing Go Modules, inviting users to report any issues they encounter with detailed descriptions. It generates random input data, which is often invalid, and the function must return a value of 1 to indicate that the fuzzer should elevate the priority of that input in future fuzzing attempts, provided that it should not be stored in the corpus, even if it uncovers new coverage; a return value of 0 signifies the opposite, while other values are reserved for future enhancements. The fuzz function is required to reside in a package that go-fuzz can recognize, meaning the code under test cannot be located within the main package, although fuzzing of internal packages is permitted. This structured approach ensures that the testing process remains efficient and focused on identifying vulnerabilities in the code.

API Access

Has API

API Access

Has API

Screenshots View All

Screenshots View All

Integrations

Firebase
Honggfuzz
Jira
LibFuzzer
american fuzzy lop

Integrations

Firebase
Honggfuzz
Jira
LibFuzzer
american fuzzy lop

Pricing Details

Free
Free Trial
Free Version

Pricing Details

Free
Free Trial
Free Version

Deployment

Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook

Deployment

Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook

Customer Support

Business Hours
Live Rep (24/7)
Online Support

Customer Support

Business Hours
Live Rep (24/7)
Online Support

Types of Training

Training Docs
Webinars
Live Training (Online)
In Person

Types of Training

Training Docs
Webinars
Live Training (Online)
In Person

Vendor Details

Company Name

Google

Website

github.com/google/clusterfuzz

Vendor Details

Company Name

dvyukov

Website

github.com/dvyukov/go-fuzz

Product Features

Product Features

Alternatives

Alternatives

Honggfuzz Reviews

Honggfuzz

Google
ClusterFuzz Reviews

ClusterFuzz

Google
LibFuzzer Reviews

LibFuzzer

LLVM Project
Peach Fuzzer Reviews

Peach Fuzzer

Peach Tech
Atheris Reviews

Atheris

Google
go-fuzz Reviews

go-fuzz

dvyukov