Average Ratings 0 Ratings
Average Ratings 0 Ratings
Description
ClusterFuzz serves as an expansive fuzzing framework designed to uncover security vulnerabilities and stability flaws in software applications. Employed by Google, it is utilized for testing all of its products and acts as the fuzzing engine for OSS-Fuzz. This infrastructure boasts a wide array of features that facilitate the seamless incorporation of fuzzing into the software development lifecycle. It offers fully automated processes for bug filing, triaging, and resolution across multiple issue tracking systems. The system supports a variety of coverage-guided fuzzing engines, optimizing results through ensemble fuzzing and diverse fuzzing methodologies. Additionally, it provides statistical insights for assessing fuzzer effectiveness and monitoring crash incidence rates. Users can navigate an intuitive web interface that simplifies the management of fuzzing activities and crash reviews. Furthermore, ClusterFuzz is compatible with various authentication systems via Firebase and includes capabilities for black-box fuzzing, minimizing test cases, and identifying regressions through bisection. In summary, this robust tool enhances software quality and security, making it invaluable for developers seeking to improve their applications.
Description
The Solidity Fuzzing Boilerplate serves as a foundational template designed to simplify the fuzzing process for various components within Solidity projects, particularly libraries. By writing tests just once, developers can easily execute them using both Echidna and Foundry's fuzzing tools. In instances where components require different versions of Solidity, these can be deployed into a Ganache instance with the help of Etheno. To generate intricate fuzzing inputs or to conduct differential fuzzing by comparing outputs with non-EVM executables, HEVM's FFI cheat code can be utilized effectively. Additionally, you can publish the results of your fuzzing experiments without concerns about licensing issues by modifying the shell script to retrieve specific files. If you do not plan to use shell commands from your Solidity contracts, it is advisable to disable FFI since it can be slow and should primarily serve as a workaround. This functionality proves beneficial when testing against complex implementations that are challenging to replicate in Solidity but are available in other programming languages. It is essential to review the commands being executed before running tests in projects that have FFI activated, ensuring a clear understanding of the operations taking place. Always prioritize clarity in your testing approach to maintain the integrity and effectiveness of your fuzzing efforts.
API Access
Has API
API Access
Has API
Integrations
Echidna Finance
Etheno
Firebase
Foundry
Honggfuzz
Jira
LibFuzzer
Solidity
american fuzzy lop
Integrations
Echidna Finance
Etheno
Firebase
Foundry
Honggfuzz
Jira
LibFuzzer
Solidity
american fuzzy lop
Pricing Details
Free
Free Trial
Free Version
Pricing Details
Free
Free Trial
Free Version
Deployment
Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook
Deployment
Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook
Customer Support
Business Hours
Live Rep (24/7)
Online Support
Customer Support
Business Hours
Live Rep (24/7)
Online Support
Types of Training
Training Docs
Webinars
Live Training (Online)
In Person
Types of Training
Training Docs
Webinars
Live Training (Online)
In Person
Vendor Details
Company Name
Website
github.com/google/clusterfuzz
Vendor Details
Company Name
patrickd
Website
github.com/patrickd-/solidity-fuzzing-boilerplate