Average Ratings 0 Ratings

Total
ease
features
design
support

No User Reviews. Be the first to provide a review:

Write a Review

Average Ratings 0 Ratings

Total
ease
features
design
support

No User Reviews. Be the first to provide a review:

Write a Review

Description

Quickly set up a virtual machine on Google Cloud for your deep learning project using the Deep Learning VM Image, which simplifies the process of launching a VM with essential AI frameworks on Google Compute Engine. This solution allows you to initiate Compute Engine instances that come equipped with popular libraries such as TensorFlow, PyTorch, and scikit-learn, eliminating concerns over software compatibility. Additionally, you have the flexibility to incorporate Cloud GPU and Cloud TPU support effortlessly. The Deep Learning VM Image is designed to support both the latest and most widely used machine learning frameworks, ensuring you have access to cutting-edge tools like TensorFlow and PyTorch. To enhance the speed of your model training and deployment, these images are optimized with the latest NVIDIA® CUDA-X AI libraries and drivers, as well as the Intel® Math Kernel Library. By using this service, you can hit the ground running with all necessary frameworks, libraries, and drivers pre-installed and validated for compatibility. Furthermore, the Deep Learning VM Image provides a smooth notebook experience through its integrated support for JupyterLab, facilitating an efficient workflow for your data science tasks. This combination of features makes it an ideal solution for both beginners and experienced practitioners in the field of machine learning.

Description

TorchMetrics comprises over 90 implementations of metrics designed for PyTorch, along with a user-friendly API that allows for the creation of custom metrics. It provides a consistent interface that enhances reproducibility while minimizing redundant code. The library is suitable for distributed training and has undergone thorough testing to ensure reliability. It features automatic batch accumulation and seamless synchronization across multiple devices. You can integrate TorchMetrics into any PyTorch model or utilize it within PyTorch Lightning for added advantages, ensuring that your data aligns with the same device as your metrics at all times. Additionally, you can directly log Metric objects in Lightning, further reducing boilerplate code. Much like torch.nn, the majority of metrics are available in both class-based and functional formats. The functional versions consist of straightforward Python functions that accept torch.tensors as inputs and yield the corresponding metric as a torch.tensor output. Virtually all functional metrics come with an equivalent class-based metric, providing users with flexible options for implementation. This versatility allows developers to choose the approach that best fits their coding style and project requirements.

API Access

Has API

API Access

Has API

Screenshots View All

Screenshots View All

Integrations

PyTorch
Chainer
Google Cloud Platform
Google Cloud TPU
Google Compute Engine
JupyterLab
Lightning AI
MXNet
NVIDIA DRIVE
TensorFlow

Integrations

PyTorch
Chainer
Google Cloud Platform
Google Cloud TPU
Google Compute Engine
JupyterLab
Lightning AI
MXNet
NVIDIA DRIVE
TensorFlow

Pricing Details

No price information available.
Free Trial
Free Version

Pricing Details

Free
Free Trial
Free Version

Deployment

Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook

Deployment

Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook

Customer Support

Business Hours
Live Rep (24/7)
Online Support

Customer Support

Business Hours
Live Rep (24/7)
Online Support

Types of Training

Training Docs
Webinars
Live Training (Online)
In Person

Types of Training

Training Docs
Webinars
Live Training (Online)
In Person

Vendor Details

Company Name

Google

Founded

1998

Country

United States

Website

cloud.google.com/deep-learning-vm

Vendor Details

Company Name

TorchMetrics

Country

United States

Website

torchmetrics.readthedocs.io/en/stable/

Product Features

Deep Learning

Convolutional Neural Networks
Document Classification
Image Segmentation
ML Algorithm Library
Model Training
Neural Network Modeling
Self-Learning
Visualization

Product Features

Application Development

Access Controls/Permissions
Code Assistance
Code Refactoring
Collaboration Tools
Compatibility Testing
Data Modeling
Debugging
Deployment Management
Graphical User Interface
Mobile Development
No-Code
Reporting/Analytics
Software Development
Source Control
Testing Management
Version Control
Web App Development

Alternatives

Alternatives

AWS Neuron Reviews

AWS Neuron

Amazon Web Services
AWS Neuron Reviews

AWS Neuron

Amazon Web Services
Keepsake Reviews

Keepsake

Replicate