Average Ratings 17 Ratings
Average Ratings 0 Ratings
Description
Gathr is a Data+AI fabric, helping enterprises rapidly deliver production-ready data and AI products. Data+AI fabric enables teams to effortlessly acquire, process, and harness data, leverage AI services to generate intelligence, and build consumer applications— all with unparalleled speed, scale, and confidence.
Gathr’s self-service, AI-assisted, and collaborative approach enables data and AI leaders to achieve massive productivity gains by empowering their existing teams to deliver more valuable work in less time. With complete ownership and control over data and AI, flexibility and agility to experiment and innovate on an ongoing basis, and proven reliable performance at real-world scale, Gathr allows them to confidently accelerate POVs to production. Additionally, Gathr supports both cloud and air-gapped deployments, making it the ideal choice for diverse enterprise needs.
Gathr, recognized by leading analysts like Gartner and Forrester, is a go-to-partner for Fortune 500 companies, such as United, Kroger, Philips, Truist, and many others.
Description
Boost the pace of AI innovation through cloud-native data integration offered by IBM Cloud Pak for Data. With AI-driven data integration capabilities accessible from anywhere, the effectiveness of your AI and analytics is directly linked to the quality of the data supporting them. Utilizing a modern container-based architecture, IBM® DataStage® for IBM Cloud Pak® for Data ensures the delivery of superior data. This solution merges top-tier data integration with DataOps, governance, and analytics within a unified data and AI platform. By automating administrative tasks, it helps in lowering total cost of ownership (TCO). The platform's AI-based design accelerators, along with ready-to-use integrations with DataOps and data science services, significantly hasten AI advancements. Furthermore, its parallelism and multicloud integration capabilities enable the delivery of reliable data on a large scale across diverse hybrid or multicloud settings. Additionally, you can efficiently manage the entire data and analytics lifecycle on the IBM Cloud Pak for Data platform, which encompasses a variety of services such as data science, event messaging, data virtualization, and data warehousing, all bolstered by a parallel engine and automated load balancing features. This comprehensive approach ensures that your organization stays ahead in the rapidly evolving landscape of data and AI.
API Access
Has API
API Access
Has API
Integrations
ActiveBatch Workload Automation
BMC AMI Ops Automation for Capping
BMC Helix Cloud Cost
Confluence
Facebook
Facebook Ads
FairCom EDGE
GitHub
GitLab
HubSpot AI Search Grader
Integrations
ActiveBatch Workload Automation
BMC AMI Ops Automation for Capping
BMC Helix Cloud Cost
Confluence
Facebook
Facebook Ads
FairCom EDGE
GitHub
GitLab
HubSpot AI Search Grader
Pricing Details
$0.25/credit
Free Trial
Free Version
Pricing Details
No price information available.
Free Trial
Free Version
Deployment
Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook
Deployment
Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook
Customer Support
Business Hours
Live Rep (24/7)
Online Support
Customer Support
Business Hours
Live Rep (24/7)
Online Support
Types of Training
Training Docs
Webinars
Live Training (Online)
In Person
Types of Training
Training Docs
Webinars
Live Training (Online)
In Person
Vendor Details
Company Name
Gathr.ai
Country
United States
Website
www.gathr.ai
Vendor Details
Company Name
IBM
Founded
1911
Country
United States
Website
www.ibm.com/products/infosphere-datastage
Product Features
Data Fabric
Data Access Management
Data Analytics
Data Collaboration
Data Lineage Tools
Data Networking / Connecting
Metadata Functionality
No Data Redundancy
Persistent Data Management
Data Preparation
Collaboration Tools
Data Access
Data Blending
Data Cleansing
Data Governance
Data Mashup
Data Modeling
Data Transformation
Machine Learning
Visual User Interface
Data Science
Access Control
Advanced Modeling
Audit Logs
Data Discovery
Data Ingestion
Data Preparation
Data Visualization
Model Deployment
Reports
ETL
Data Analysis
Data Filtering
Data Quality Control
Job Scheduling
Match & Merge
Metadata Management
Non-Relational Transformations
Version Control
Machine Learning
Deep Learning
ML Algorithm Library
Model Training
Natural Language Processing (NLP)
Predictive Modeling
Statistical / Mathematical Tools
Templates
Visualization
Streaming Analytics
Data Enrichment
Data Wrangling / Data Prep
Multiple Data Source Support
Process Automation
Real-time Analysis / Reporting
Visualization Dashboards
Product Features
Big Data
Collaboration
Data Blends
Data Cleansing
Data Mining
Data Visualization
Data Warehousing
High Volume Processing
No-Code Sandbox
Predictive Analytics
Templates
Data Lineage
Database Change Impact Analysis
Filter Lineage Links
Implicit Connection Discovery
Lineage Object Filtering
Object Lineage Tracing
Point-in-Time Visibility
User/Client/Target Connection Visibility
Visual & Text Lineage View
ETL
Data Analysis
Data Filtering
Data Quality Control
Job Scheduling
Match & Merge
Metadata Management
Non-Relational Transformations
Version Control