Average Ratings 0 Ratings
Average Ratings 0 Ratings
Description
Fuzzing serves as an effective method for identifying software bugs. Essentially, it involves generating numerous randomly crafted inputs for the software to process in order to observe the outcomes. When a program crashes, it usually indicates that there is a problem. Despite being a widely recognized approach, it is often surprisingly straightforward to uncover bugs, including those with potential security risks, in commonly used software. Memory access errors, especially prevalent in programs developed in C/C++, tend to be the most frequently identified issues during fuzzing. While the specifics may vary, the underlying problem is typically that the software accesses incorrect memory locations. Modern Linux or BSD systems come equipped with a variety of fundamental tools designed for file display and parsing; however, most of these tools are ill-equipped to handle untrusted inputs in their present forms. Conversely, we now possess advanced tools that empower developers to detect and investigate these vulnerabilities more effectively. These innovations not only enhance security but also contribute to the overall stability of software systems.
Description
ToothPicker serves as an innovative in-process, coverage-guided fuzzer specifically designed for iOS, focusing on the Bluetooth daemon and various Bluetooth protocols. Utilizing FRIDA as its foundation, this tool can be tailored to function on any platform compatible with FRIDA. The repository also features an over-the-air fuzzer that showcases an example implementation for fuzzing Apple's MagicPairing protocol through InternalBlue. Furthermore, it includes the ReplayCrashFile script, which aids in confirming any crashes identified by the in-process fuzzer. This simple fuzzer operates by flipping bits and bytes in inactive connections, lacking coverage or injection, yet it serves effectively as a demonstration and is stateful. It requires only Python and Frida to operate, eliminating the need for additional modules or installations. Built upon the frizzer codebase, it's advisable to establish a virtual Python environment for optimal performance with frizzer. Notably, with the introduction of the iPhone XR/Xs, the PAC (Pointer Authentication Code) feature has been implemented. This advancement underscores the necessity for continuous adaptation of fuzzing tools like ToothPicker to keep pace with evolving iOS security measures.
API Access
Has API
API Access
Has API
Pricing Details
Free
Free Trial
Free Version
Pricing Details
Free
Free Trial
Free Version
Deployment
Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook
Deployment
Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook
Customer Support
Business Hours
Live Rep (24/7)
Online Support
Customer Support
Business Hours
Live Rep (24/7)
Online Support
Types of Training
Training Docs
Webinars
Live Training (Online)
In Person
Types of Training
Training Docs
Webinars
Live Training (Online)
In Person
Vendor Details
Company Name
Fuzzing Project
Website
fuzzing-project.org
Vendor Details
Company Name
Secure Mobile Networking Lab
Website
github.com/seemoo-lab/toothpicker