Average Ratings 0 Ratings
Average Ratings 0 Ratings
Description
FutureHouse is a nonprofit research organization dedicated to harnessing AI for the advancement of scientific discovery in biology and other intricate disciplines. This innovative lab boasts advanced AI agents that support researchers by speeding up various phases of the research process. Specifically, FutureHouse excels in extracting and summarizing data from scientific publications, demonstrating top-tier performance on assessments like the RAG-QA Arena's science benchmark. By utilizing an agentic methodology, it facilitates ongoing query refinement, re-ranking of language models, contextual summarization, and exploration of document citations to improve retrieval precision. In addition, FutureHouse provides a robust framework for training language agents on demanding scientific challenges, which empowers these agents to undertake tasks such as protein engineering, summarizing literature, and executing molecular cloning. To further validate its efficacy, the organization has developed the LAB-Bench benchmark, which measures language models against various biology research assignments, including information extraction and database retrieval, thus contributing to the broader scientific community. FutureHouse not only enhances research capabilities but also fosters collaboration among scientists and AI specialists to push the boundaries of knowledge.
Description
Pinecone Rerank V0 is a cross-encoder model specifically designed to enhance precision in reranking tasks, thereby improving enterprise search and retrieval-augmented generation (RAG) systems. This model processes both queries and documents simultaneously, enabling it to assess fine-grained relevance and assign a relevance score ranging from 0 to 1 for each query-document pair. With a maximum context length of 512 tokens, it ensures that the quality of ranking is maintained. In evaluations based on the BEIR benchmark, Pinecone Rerank V0 stood out by achieving the highest average NDCG@10, surpassing other competing models in 6 out of 12 datasets. Notably, it achieved an impressive 60% increase in performance on the Fever dataset when compared to Google Semantic Ranker, along with over 40% improvement on the Climate-Fever dataset against alternatives like cohere-v3-multilingual and voyageai-rerank-2. Accessible via Pinecone Inference, this model is currently available to all users in a public preview, allowing for broader experimentation and feedback. Its design reflects an ongoing commitment to innovation in search technology, making it a valuable tool for organizations seeking to enhance their information retrieval capabilities.
API Access
Has API
API Access
Has API
Integrations
Airbyte
Amazon Web Services (AWS)
Cohere
Context Data
Datadog
Datavolo
Fleak
Flowise
Gathr.ai
GitHub Copilot
Integrations
Airbyte
Amazon Web Services (AWS)
Cohere
Context Data
Datadog
Datavolo
Fleak
Flowise
Gathr.ai
GitHub Copilot
Pricing Details
No price information available.
Free Trial
Free Version
Pricing Details
$25 per month
Free Trial
Free Version
Deployment
Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook
Deployment
Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook
Customer Support
Business Hours
Live Rep (24/7)
Online Support
Customer Support
Business Hours
Live Rep (24/7)
Online Support
Types of Training
Training Docs
Webinars
Live Training (Online)
In Person
Types of Training
Training Docs
Webinars
Live Training (Online)
In Person
Vendor Details
Company Name
FutureHouse
Founded
2023
Country
United States
Website
www.futurehouse.org
Vendor Details
Company Name
Pinecone
Founded
2019
Country
United States
Website
www.pinecone.io/blog/pinecone-rerank-v0-announcement/