Average Ratings 0 Ratings
Average Ratings 0 Ratings
Description
Deep learning frameworks like TensorFlow, PyTorch, Caffe, Torch, Theano, and MXNet have significantly enhanced the accessibility of deep learning by simplifying the design, training, and application of deep learning models. Fabric for Deep Learning (FfDL, pronounced “fiddle”) offers a standardized method for deploying these deep-learning frameworks as a service on Kubernetes, ensuring smooth operation. The architecture of FfDL is built on microservices, which minimizes the interdependence between components, promotes simplicity, and maintains a stateless nature for each component. This design choice also helps to isolate failures, allowing for independent development, testing, deployment, scaling, and upgrading of each element. By harnessing the capabilities of Kubernetes, FfDL delivers a highly scalable, resilient, and fault-tolerant environment for deep learning tasks. Additionally, the platform incorporates a distribution and orchestration layer that enables efficient learning from large datasets across multiple compute nodes within a manageable timeframe. This comprehensive approach ensures that deep learning projects can be executed with both efficiency and reliability.
Description
Torch is a powerful framework for scientific computing that prioritizes GPU utilization and offers extensive support for various machine learning algorithms. Its user-friendly design is enhanced by LuaJIT, a fast scripting language, alongside a robust C/CUDA backbone that ensures efficiency. The primary aim of Torch is to provide both exceptional flexibility and speed in the development of scientific algorithms, all while maintaining simplicity in the process. With a rich array of community-driven packages, Torch caters to diverse fields such as machine learning, computer vision, signal processing, and more, effectively leveraging the resources of the Lua community. Central to Torch's functionality are its widely-used neural network and optimization libraries, which strike a balance between ease of use and flexibility for crafting intricate neural network architectures. Users can create complex graphs of neural networks and efficiently distribute the workload across multiple CPUs and GPUs, thereby optimizing performance. Overall, Torch serves as a versatile tool for researchers and developers aiming to advance their work in various computational domains.
API Access
Has API
API Access
Has API
Integrations
Caffe
Hetman Internet Spy
Kubernetes
LeaderGPU
PyTorch
TensorFlow
Torch
Integrations
Caffe
Hetman Internet Spy
Kubernetes
LeaderGPU
PyTorch
TensorFlow
Torch
Pricing Details
No price information available.
Free Trial
Free Version
Pricing Details
No price information available.
Free Trial
Free Version
Deployment
Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook
Deployment
Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook
Customer Support
Business Hours
Live Rep (24/7)
Online Support
Customer Support
Business Hours
Live Rep (24/7)
Online Support
Types of Training
Training Docs
Webinars
Live Training (Online)
In Person
Types of Training
Training Docs
Webinars
Live Training (Online)
In Person
Vendor Details
Company Name
IBM
Founded
1911
Country
United States
Website
developer.ibm.com/open/projects/fabric-for-deep-learning-ffdl/
Vendor Details
Company Name
Torch
Website
torch.ch/
Product Features
Deep Learning
Convolutional Neural Networks
Document Classification
Image Segmentation
ML Algorithm Library
Model Training
Neural Network Modeling
Self-Learning
Visualization
Product Features
Machine Learning
Deep Learning
ML Algorithm Library
Model Training
Natural Language Processing (NLP)
Predictive Modeling
Statistical / Mathematical Tools
Templates
Visualization