Average Ratings 0 Ratings
Average Ratings 0 Ratings
Description
Evo 2 represents a cutting-edge genomic foundation model that excels in making predictions and designing tasks related to DNA, RNA, and proteins. It employs an advanced deep learning architecture that allows for the modeling of biological sequences with single-nucleotide accuracy, achieving impressive scaling of both compute and memory resources as the context length increases. With a robust training of 40 billion parameters and a context length of 1 megabase, Evo 2 has analyzed over 9 trillion nucleotides sourced from a variety of eukaryotic and prokaryotic genomes. This extensive dataset facilitates Evo 2's ability to conduct zero-shot function predictions across various biological types, including DNA, RNA, and proteins, while also being capable of generating innovative sequences that maintain a plausible genomic structure. The model's versatility has been showcased through its effectiveness in designing operational CRISPR systems and in the identification of mutations that could lead to diseases in human genes. Furthermore, Evo 2 is available to the public on Arc's GitHub repository, and it is also incorporated into the NVIDIA BioNeMo framework, enhancing its accessibility for researchers and developers alike. Its integration into existing platforms signifies a major step forward for genomic modeling and analysis.
Description
NVIDIA® Parabricks® stands out as the sole suite of genomic analysis applications that harnesses GPU acceleration to provide rapid and precise genome and exome analysis for various stakeholders, including sequencing centers, clinical teams, genomics researchers, and developers of high-throughput sequencing instruments. This innovative platform offers GPU-optimized versions of commonly utilized tools by computational biologists and bioinformaticians, leading to notably improved runtimes, enhanced workflow scalability, and reduced computing expenses. Spanning from FastQ files to Variant Call Format (VCF), NVIDIA Parabricks significantly boosts performance across diverse hardware setups featuring NVIDIA A100 Tensor Core GPUs. Researchers in genomics can benefit from accelerated processing throughout their entire analysis workflows, which includes stages such as alignment, sorting, and variant calling. With the deployment of additional GPUs, users can observe nearly linear scaling in computational speed when compared to traditional CPU-only systems, achieving acceleration rates of up to 107X. This remarkable efficiency makes NVIDIA Parabricks an essential tool for anyone involved in genomic analysis.
API Access
Has API
API Access
Has API
Integrations
Amazon Web Services (AWS)
BioNeMo
Evo Designer
GitHub
Google Cloud Platform
Hugging Face
Microsoft Azure
Oracle Cloud Infrastructure
Integrations
Amazon Web Services (AWS)
BioNeMo
Evo Designer
GitHub
Google Cloud Platform
Hugging Face
Microsoft Azure
Oracle Cloud Infrastructure
Pricing Details
No price information available.
Free Trial
Free Version
Pricing Details
No price information available.
Free Trial
Free Version
Deployment
Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook
Deployment
Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook
Customer Support
Business Hours
Live Rep (24/7)
Online Support
Customer Support
Business Hours
Live Rep (24/7)
Online Support
Types of Training
Training Docs
Webinars
Live Training (Online)
In Person
Types of Training
Training Docs
Webinars
Live Training (Online)
In Person
Vendor Details
Company Name
Arc Institute
Country
United States
Website
arcinstitute.org/tools/evo
Vendor Details
Company Name
NVIDIA
Founded
1993
Country
United States
Website
www.nvidia.com/en-us/clara/genomics/