Average Ratings 0 Ratings

Total
ease
features
design
support

No User Reviews. Be the first to provide a review:

Write a Review

Average Ratings 0 Ratings

Total
ease
features
design
support

No User Reviews. Be the first to provide a review:

Write a Review

Description

Cohere's Embed stands out as a premier multimodal embedding platform that effectively converts text, images, or a blend of both into high-quality vector representations. These vector embeddings are specifically tailored for various applications such as semantic search, retrieval-augmented generation, classification, clustering, and agentic AI. The newest version, embed-v4.0, introduces the capability to handle mixed-modality inputs, permitting users to create a unified embedding from both text and images. It features Matryoshka embeddings that can be adjusted in dimensions of 256, 512, 1024, or 1536, providing users with the flexibility to optimize performance against resource usage. With a context length that accommodates up to 128,000 tokens, embed-v4.0 excels in managing extensive documents and intricate data formats. Moreover, it supports various compressed embedding types such as float, int8, uint8, binary, and ubinary, which contributes to efficient storage solutions and expedites retrieval in vector databases. Its multilingual capabilities encompass over 100 languages, positioning it as a highly adaptable tool for applications across the globe. Consequently, users can leverage this platform to handle diverse datasets effectively while maintaining performance efficiency.

Description

The Gemini Embedding's inaugural text model, known as gemini-embedding-001, is now officially available through the Gemini API and Vertex AI, having maintained its leading position on the Massive Text Embedding Benchmark Multilingual leaderboard since its experimental introduction in March, attributed to its outstanding capabilities in retrieval, classification, and various embedding tasks, surpassing both traditional Google models and those from external companies. This highly adaptable model accommodates more than 100 languages and has a maximum input capacity of 2,048 tokens, utilizing the innovative Matryoshka Representation Learning (MRL) method, which allows developers to select output dimensions of 3072, 1536, or 768 to ensure the best balance of quality, performance, and storage efficiency. Developers are able to utilize it via the familiar embed_content endpoint in the Gemini API, and although the older experimental versions will be phased out by 2025, transitioning to the new model does not necessitate re-embedding of previously stored content. This seamless migration process is designed to enhance user experience without disrupting existing workflows.

API Access

Has API

API Access

Has API

Screenshots View All

Screenshots View All

Integrations

Cohere
Gemini
Google AI Studio
Python
Vertex AI

Integrations

Cohere
Gemini
Google AI Studio
Python
Vertex AI

Pricing Details

$0.47 per image
Free Trial
Free Version

Pricing Details

$0.15 per 1M input tokens
Free Trial
Free Version

Deployment

Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook

Deployment

Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook

Customer Support

Business Hours
Live Rep (24/7)
Online Support

Customer Support

Business Hours
Live Rep (24/7)
Online Support

Types of Training

Training Docs
Webinars
Live Training (Online)
In Person

Types of Training

Training Docs
Webinars
Live Training (Online)
In Person

Vendor Details

Company Name

Cohere

Founded

2019

Country

Canada

Website

cohere.com/embed

Vendor Details

Company Name

Google

Founded

1998

Country

United States

Website

developers.googleblog.com/en/gemini-embedding-available-gemini-api/

Product Features

Alternatives

Alternatives

Codestral Embed Reviews

Codestral Embed

Mistral AI
voyage-3-large Reviews

voyage-3-large

Voyage AI
voyage-code-3 Reviews

voyage-code-3

Voyage AI
voyage-code-3 Reviews

voyage-code-3

Voyage AI