Average Ratings 0 Ratings
Average Ratings 0 Ratings
Description
With Determined, you can engage in distributed training without needing to modify your model code, as it efficiently manages the provisioning of machines, networking, data loading, and fault tolerance. Our open-source deep learning platform significantly reduces training times to mere hours or minutes, eliminating the lengthy process of days or weeks. Gone are the days of tedious tasks like manual hyperparameter tuning, re-running failed jobs, and the constant concern over hardware resources. Our advanced distributed training solution not only surpasses industry benchmarks but also requires no adjustments to your existing code and seamlessly integrates with our cutting-edge training platform. Additionally, Determined features built-in experiment tracking and visualization that automatically logs metrics, making your machine learning projects reproducible and fostering greater collaboration within your team. This enables researchers to build upon each other's work and drive innovation in their respective fields, freeing them from the stress of managing errors and infrastructure. Ultimately, this streamlined approach empowers teams to focus on what they do best—creating and refining their models.
Description
TensorBoard serves as a robust visualization platform within TensorFlow, specifically crafted to aid in the experimentation process of machine learning. It allows users to monitor and illustrate various metrics, such as loss and accuracy, while also offering insights into the model architecture through visual representations of its operations and layers. Users can observe the evolution of weights, biases, and other tensors via histograms over time, and it also allows for the projection of embeddings into a more manageable lower-dimensional space, along with the capability to display various forms of data, including images, text, and audio. Beyond these visualization features, TensorBoard includes profiling tools that help streamline and enhance the performance of TensorFlow applications. Collectively, these functionalities equip practitioners with essential tools for understanding, troubleshooting, and refining their TensorFlow projects, ultimately improving the efficiency of the machine learning process. In the realm of machine learning, accurate measurement is crucial for enhancement, and TensorBoard fulfills this need by supplying the necessary metrics and visual insights throughout the workflow. This platform not only tracks various experimental metrics but also facilitates the visualization of complex model structures and the dimensionality reduction of embeddings, reinforcing its importance in the machine learning toolkit.
API Access
Has API
API Access
Has API
Integrations
TensorFlow
Amazon S3
Amazon SageMaker
Amazon Web Services (AWS)
Apache Airflow
Apache Spark
Dataoorts GPU Cloud
GitHub
Google Cloud Platform
Google Colab
Integrations
TensorFlow
Amazon S3
Amazon SageMaker
Amazon Web Services (AWS)
Apache Airflow
Apache Spark
Dataoorts GPU Cloud
GitHub
Google Cloud Platform
Google Colab
Pricing Details
No price information available.
Free Trial
Free Version
Pricing Details
Free
Free Trial
Free Version
Deployment
Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook
Deployment
Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook
Customer Support
Business Hours
Live Rep (24/7)
Online Support
Customer Support
Business Hours
Live Rep (24/7)
Online Support
Types of Training
Training Docs
Webinars
Live Training (Online)
In Person
Types of Training
Training Docs
Webinars
Live Training (Online)
In Person
Vendor Details
Company Name
Determined AI
Country
United States
Website
www.determined.ai/
Vendor Details
Company Name
Tensorflow
Country
United States
Website
www.tensorflow.org/tensorboard
Product Features
Artificial Intelligence
Chatbot
For Healthcare
For Sales
For eCommerce
Image Recognition
Machine Learning
Multi-Language
Natural Language Processing
Predictive Analytics
Process/Workflow Automation
Rules-Based Automation
Virtual Personal Assistant (VPA)
Deep Learning
Convolutional Neural Networks
Document Classification
Image Segmentation
ML Algorithm Library
Model Training
Neural Network Modeling
Self-Learning
Visualization