Average Ratings 0 Ratings
Average Ratings 0 Ratings
Description
DeepSeekMath is an advanced 7B parameter language model created by DeepSeek-AI, specifically engineered to enhance mathematical reasoning capabilities within open-source language models. Building upon the foundation of DeepSeek-Coder-v1.5, this model undergoes additional pre-training utilizing 120 billion math-related tokens gathered from Common Crawl, complemented by data from natural language and coding sources. It has shown exceptional outcomes, achieving a score of 51.7% on the challenging MATH benchmark without relying on external tools or voting systems, positioning itself as a strong contender against models like Gemini-Ultra and GPT-4. The model's prowess is further bolstered by a carefully curated data selection pipeline and the implementation of Group Relative Policy Optimization (GRPO), which improves both its mathematical reasoning skills and efficiency in memory usage. DeepSeekMath is offered in various formats including base, instruct, and reinforcement learning (RL) versions, catering to both research and commercial interests, and is intended for individuals eager to delve into or leverage sophisticated mathematical problem-solving in the realm of artificial intelligence. Its versatility makes it a valuable resource for researchers and practitioners alike, driving innovation in AI-driven mathematics.
Description
In honor of Archimedes, whose 2311th anniversary we celebrate this year, we are excited to introduce our inaugural Mathstral model, a specialized 7B architecture tailored for mathematical reasoning and scientific exploration. This model features a 32k context window and is released under the Apache 2.0 license. Our intention behind contributing Mathstral to the scientific community is to enhance the pursuit of solving advanced mathematical challenges that necessitate intricate, multi-step logical reasoning. The launch of Mathstral is part of our wider initiative to support academic endeavors, developed in conjunction with Project Numina. Much like Isaac Newton during his era, Mathstral builds upon the foundation laid by Mistral 7B, focusing on STEM disciplines. It demonstrates top-tier reasoning capabilities within its category, achieving remarkable results on various industry-standard benchmarks. Notably, it scores 56.6% on the MATH benchmark and 63.47% on the MMLU benchmark, showcasing the performance differences by subject between Mathstral 7B and its predecessor, Mistral 7B, further emphasizing the advancements made in mathematical modeling. This initiative aims to foster innovation and collaboration within the mathematical community.
API Access
Has API
API Access
Has API
Integrations
302.AI
AnythingLLM
DataChain
Echo AI
GMTech
Lewis
LibreChat
Mammouth AI
MindMac
Ministral 8B
Integrations
302.AI
AnythingLLM
DataChain
Echo AI
GMTech
Lewis
LibreChat
Mammouth AI
MindMac
Ministral 8B
Pricing Details
Free
Free Trial
Free Version
Pricing Details
Free
Free Trial
Free Version
Deployment
Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook
Deployment
Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook
Customer Support
Business Hours
Live Rep (24/7)
Online Support
Customer Support
Business Hours
Live Rep (24/7)
Online Support
Types of Training
Training Docs
Webinars
Live Training (Online)
In Person
Types of Training
Training Docs
Webinars
Live Training (Online)
In Person
Vendor Details
Company Name
DeepSeek
Founded
2023
Country
China
Website
deepseek.com
Vendor Details
Company Name
Mistral AI
Founded
2023
Country
France
Website
mistral.ai/news/mathstral/