Average Ratings 0 Ratings
Average Ratings 0 Ratings
Description
DWSIM is a versatile and free chemical process simulator that adheres to CAPE-OPEN standards, functioning seamlessly on multiple operating systems like Windows, Linux, macOS, Android, and iOS. Its user-friendly graphical interface allows for features that were once only available in paid software. The simulator excels in both steady-state and dynamic modeling by employing a parallel modular solver for enhanced efficiency. Additionally, DWSIM comes equipped with sophisticated property packages. Users can access an extensive array of unit operations, such as mixers, splitters, separators, pumps, compressors, expanders, heaters, coolers, valves, pipe segments, shortcut columns, heat exchangers, a variety of reactors, distillation and absorption columns, solids separators, and cake filters, alongside spreadsheets, Python scripts, and flowsheet unit operations. Furthermore, it includes an Excel Add-In for executing thermodynamic calculations directly within spreadsheets, as well as an automation API that facilitates the creation, modification, execution, and saving of flowsheets, making it an all-encompassing tool for chemical engineering. With its robust capabilities and user-centric design, DWSIM stands out as an invaluable resource for professionals in the field.
Description
Quantum computing paves the way for the swift and cost-efficient creation of novel molecules and materials. InQuanto, an advanced platform for quantum computational chemistry, marks a significant advancement towards achieving this objective. The field of quantum chemistry seeks to precisely characterize and forecast the essential properties of matter, making it an invaluable asset for the innovation and formulation of new substances. Nonetheless, the intricacies of industrially relevant molecules and materials present challenges for accurate simulation. Current technologies necessitate a compromise, forcing users to choose between utilizing highly precise methods on minimal systems or resorting to approximations. InQuanto's adaptable workflow allows both computational chemists and quantum algorithm engineers to seamlessly integrate cutting-edge quantum algorithms with sophisticated subroutines and error mitigation techniques, optimizing performance on existing quantum platforms. This flexibility not only enhances research outcomes but also fosters collaboration among experts in the field, driving further innovation.
API Access
Has API
API Access
Has API
Pricing Details
Free
Free Trial
Free Version
Pricing Details
No price information available.
Free Trial
Free Version
Deployment
Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook
Deployment
Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook
Customer Support
Business Hours
Live Rep (24/7)
Online Support
Customer Support
Business Hours
Live Rep (24/7)
Online Support
Types of Training
Training Docs
Webinars
Live Training (Online)
In Person
Types of Training
Training Docs
Webinars
Live Training (Online)
In Person
Vendor Details
Company Name
DWSIM
Country
United States
Website
dwsim.org
Vendor Details
Company Name
Quantinuum
Country
United States
Website
www.quantinuum.com/computationalchemistry/inquanto
Product Features
Chemical
Certificates of Analysis
Chemical Process Simulation
Computer-Assisted Structure Elucidation (CASE)
ISO Management
Inventory Management
Particle Tracking
Reporting & Statistics
Samples Tracking
Traceability
Uncertainty Analysis
Simulation
1D Simulation
3D Modeling
3D Simulation
Agent-Based Modeling
Continuous Modeling
Design Analysis
Direct Manipulation
Discrete Event Modeling
Dynamic Modeling
Graphical Modeling
Industry Specific Database
Monte Carlo Simulation
Motion Modeling
Presentation Tools
Stochastic Modeling
Turbulence Modeling
Product Features
Chemical
Certificates of Analysis
Chemical Process Simulation
Computer-Assisted Structure Elucidation (CASE)
ISO Management
Inventory Management
Particle Tracking
Reporting & Statistics
Samples Tracking
Traceability
Uncertainty Analysis