Average Ratings 0 Ratings
Average Ratings 0 Ratings
Description
Data Version Control (DVC) is an open-source system specifically designed for managing version control in data science and machine learning initiatives. It provides a Git-like interface that allows users to systematically organize data, models, and experiments, making it easier to oversee and version various types of files such as images, audio, video, and text. This system helps structure the machine learning modeling process into a reproducible workflow, ensuring consistency in experimentation. DVC's integration with existing software engineering tools is seamless, empowering teams to articulate every facet of their machine learning projects through human-readable metafiles that detail data and model versions, pipelines, and experiments. This methodology promotes adherence to best practices and the use of well-established engineering tools, thus bridging the gap between the realms of data science and software development. By utilizing Git, DVC facilitates the versioning and sharing of complete machine learning projects, encompassing source code, configurations, parameters, metrics, data assets, and processes by committing the DVC metafiles as placeholders. Furthermore, its user-friendly approach encourages collaboration among team members, enhancing productivity and innovation within projects.
Description
We aim to transform the accessibility of production-ready Machine Learning. ZenML, a leading product in MAIOT, serves as an open-source MLOps framework that allows users to create reproducible Machine Learning pipelines. These pipelines are designed to manage the entire process from data versioning to deploying a model seamlessly. The framework’s core structure emphasizes extensible interfaces, enabling users to tackle intricate pipeline scenarios while also offering a user-friendly “happy path” that facilitates success in typical use cases without the burden of excessive boilerplate code. Our goal is to empower Data Scientists to concentrate on their specific use cases, objectives, and workflows related to Machine Learning, rather than on the complexities of the underlying technologies. As the landscape of Machine Learning rapidly evolves, both in software and hardware, we strive to separate reproducible workflows from the necessary tools, simplifying the integration of new technologies for users. Ultimately, this approach aims to foster innovation and streamline the development process in the Machine Learning realm.
API Access
Has API
API Access
Has API
Integrations
Git
Visual Studio Code
Pricing Details
No price information available.
Free Trial
Free Version
Pricing Details
No price information available.
Free Trial
Free Version
Deployment
Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook
Deployment
Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook
Customer Support
Business Hours
Live Rep (24/7)
Online Support
Customer Support
Business Hours
Live Rep (24/7)
Online Support
Types of Training
Training Docs
Webinars
Live Training (Online)
In Person
Types of Training
Training Docs
Webinars
Live Training (Online)
In Person
Vendor Details
Company Name
iterative.ai
Founded
2018
Country
United States
Website
dvc.org
Vendor Details
Company Name
MAIOT
Founded
2021
Country
Germany
Website
www.maiot.io
Product Features
Product Features
Fleet Maintenance
Cost Tracking
Fuel Tracking
Maintenance History
Maintenance Scheduling
Parts Inventory Management
Repair Tracking
Tire Management
Vehicle Information
Warranty Tracking
Work Order Management