Average Ratings 0 Ratings
Average Ratings 0 Ratings
Description
Cybernetica specializes in providing Nonlinear Model Predictive Control (NMPC) utilizing mechanistic models. Our innovative software solution, Cybernetica CENIT, features a versatile architecture capable of addressing diverse industrial challenges by delivering optimal strategies. This includes advanced multivariable optimal control, predictive control mechanisms, and intelligent feed-forward strategies, along with efficient handling of constraints. Furthermore, our adaptive control capabilities leverage state and parameter estimation, incorporating feedback from indirect measurements via the process model. The use of nonlinear models allows for effective operation across extensive ranges, enhancing the management of nonlinear processes. This leads to a diminished reliance on step-response experiments and bolstered accuracy in state and parameter estimations. Additionally, we offer control solutions for both batch and semi-batch operations, efficiently managing nonlinear processes that function under fluctuating conditions. Our technology also ensures optimal grade transitions in continuous operations, safe supervision of exothermic processes, and control of unmeasured variables, including conversion rates and product quality. As a result, we contribute to reduced energy consumption and a lower carbon footprint, while also enhancing overall process efficiency. In summary, Cybernetica is committed to advancing industrial control solutions that optimize performance and sustainability.
Description
The Model Predictive Control Toolbox™ offers a comprehensive suite of functions, an intuitive app, Simulink® blocks, and practical reference examples to facilitate the development of model predictive control (MPC) systems. It caters to linear challenges by enabling the creation of implicit, explicit, adaptive, and gain-scheduled MPC strategies. For more complex nonlinear scenarios, users can execute both single-stage and multi-stage nonlinear MPC. Additionally, this toolbox includes deployable optimization solvers and permits the integration of custom solvers. Users can assess the effectiveness of their controllers through closed-loop simulations in MATLAB® and Simulink environments. For applications in automated driving, the toolbox also features MISRA C®- and ISO 26262-compliant blocks and examples, allowing for a swift initiation of projects related to lane keep assist, path planning, path following, and adaptive cruise control. You have the capability to design implicit, gain-scheduled, and adaptive MPC controllers that tackle quadratic programming (QP) problems, and you can generate an explicit MPC controller derived from an implicit design. Furthermore, the toolbox supports discrete control set MPC for handling mixed-integer QP challenges, thus broadening its applicability in diverse control systems. With these extensive features, the toolbox ensures that both novice and experienced users can effectively implement advanced control strategies.
API Access
Has API
API Access
Has API
Integrations
No details available.
Integrations
No details available.
Pricing Details
No price information available.
Free Trial
Free Version
Pricing Details
$1,180 per year
Free Trial
Free Version
Deployment
Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook
Deployment
Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook
Customer Support
Business Hours
Live Rep (24/7)
Online Support
Customer Support
Business Hours
Live Rep (24/7)
Online Support
Types of Training
Training Docs
Webinars
Live Training (Online)
In Person
Types of Training
Training Docs
Webinars
Live Training (Online)
In Person
Vendor Details
Company Name
Cybernetica
Country
Norway
Website
cybernetica.no/technology/model-predictive-control/
Vendor Details
Company Name
MathWorks
Country
United States
Website
www.mathworks.com/products/model-predictive-control.html