Average Ratings 0 Ratings

Total
ease
features
design
support

No User Reviews. Be the first to provide a review:

Write a Review

Average Ratings 0 Ratings

Total
ease
features
design
support

No User Reviews. Be the first to provide a review:

Write a Review

Description

ConvNetJS is a JavaScript library designed for training deep learning models, specifically neural networks, directly in your web browser. With just a simple tab open, you can start the training process without needing any software installations, compilers, or even GPUs—it's that hassle-free. The library enables users to create and implement neural networks using JavaScript and was initially developed by @karpathy, but it has since been enhanced through community contributions, which are greatly encouraged. For those who want a quick and easy way to access the library without delving into development, you can download the minified version via the link to convnet-min.js. Alternatively, you can opt to get the latest version from GitHub, where the file you'll likely want is build/convnet-min.js, which includes the complete library. To get started, simply create a basic index.html file in a designated folder and place build/convnet-min.js in the same directory to begin experimenting with deep learning in your browser. This approach allows anyone, regardless of their technical background, to engage with neural networks effortlessly.

Description

TFlearn is a flexible and clear deep learning framework that operates on top of TensorFlow. Its primary aim is to offer a more user-friendly API for TensorFlow, which accelerates the experimentation process while ensuring complete compatibility and clarity with the underlying framework. The library provides an accessible high-level interface for developing deep neural networks, complete with tutorials and examples for guidance. It facilitates rapid prototyping through its modular design, which includes built-in neural network layers, regularizers, optimizers, and metrics. Users benefit from full transparency regarding TensorFlow, as all functions are tensor-based and can be utilized independently of TFLearn. Additionally, it features robust helper functions to assist in training any TensorFlow graph, accommodating multiple inputs, outputs, and optimization strategies. The graph visualization is user-friendly and aesthetically pleasing, offering insights into weights, gradients, activations, and more. Moreover, the high-level API supports a wide range of contemporary deep learning architectures, encompassing Convolutions, LSTM, BiRNN, BatchNorm, PReLU, Residual networks, and Generative networks, making it a versatile tool for researchers and developers alike.

API Access

Has API

API Access

Has API

Screenshots View All

Screenshots View All

Integrations

Qwen3-Omni
TensorFlow

Integrations

Qwen3-Omni
TensorFlow

Pricing Details

No price information available.
Free Trial
Free Version

Pricing Details

No price information available.
Free Trial
Free Version

Deployment

Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook

Deployment

Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook

Customer Support

Business Hours
Live Rep (24/7)
Online Support

Customer Support

Business Hours
Live Rep (24/7)
Online Support

Types of Training

Training Docs
Webinars
Live Training (Online)
In Person

Types of Training

Training Docs
Webinars
Live Training (Online)
In Person

Vendor Details

Company Name

ConvNetJS

Website

cs.stanford.edu/people/karpathy/convnetjs/

Vendor Details

Company Name

TFLearn

Website

tflearn.org

Product Features

Deep Learning

Convolutional Neural Networks
Document Classification
Image Segmentation
ML Algorithm Library
Model Training
Neural Network Modeling
Self-Learning
Visualization

Product Features

Deep Learning

Convolutional Neural Networks
Document Classification
Image Segmentation
ML Algorithm Library
Model Training
Neural Network Modeling
Self-Learning
Visualization

Alternatives

Alternatives

TensorBoard Reviews

TensorBoard

Tensorflow