Average Ratings 0 Ratings

Total
ease
features
design
support

No User Reviews. Be the first to provide a review:

Write a Review

Average Ratings 0 Ratings

Total
ease
features
design
support

No User Reviews. Be the first to provide a review:

Write a Review

Description

CodeMender is an innovative AI-driven tool created by DeepMind that automatically detects, analyzes, and corrects security vulnerabilities within software code. By integrating sophisticated reasoning capabilities through the Gemini Deep Think models with various analysis techniques such as static and dynamic analysis, differential testing, fuzzing, and SMT solvers, it effectively pinpoints the underlying causes of issues, generates high-quality fixes, and ensures these solutions are validated to prevent regressions or functional failures. The operation of CodeMender involves proposing patches that comply with established style guidelines and maintain structural integrity, while it also employs critique and verification agents to assess modifications and self-correct if any problems are identified. Additionally, CodeMender can actively refactor existing code to incorporate safer APIs or data structures, such as implementing -fbounds-safety annotations to mitigate the risk of buffer overflows. To date, this remarkable tool has contributed dozens of patches to significant open-source projects, some of which consist of millions of lines of code, showcasing its potential impact on software security and reliability. Its ongoing development promises even greater advancements in the realm of automated code improvement and safety.

Description

Go-fuzz serves as a coverage-guided fuzzing tool designed specifically for testing Go packages, making it particularly effective for those that handle intricate inputs, whether they are textual or binary in nature. This method of testing is crucial for strengthening systems that need to process data from potentially harmful sources, such as network interactions. Recently, go-fuzz has introduced initial support for fuzzing Go Modules, inviting users to report any issues they encounter with detailed descriptions. It generates random input data, which is often invalid, and the function must return a value of 1 to indicate that the fuzzer should elevate the priority of that input in future fuzzing attempts, provided that it should not be stored in the corpus, even if it uncovers new coverage; a return value of 0 signifies the opposite, while other values are reserved for future enhancements. The fuzz function is required to reside in a package that go-fuzz can recognize, meaning the code under test cannot be located within the main package, although fuzzing of internal packages is permitted. This structured approach ensures that the testing process remains efficient and focused on identifying vulnerabilities in the code.

API Access

Has API

API Access

Has API

Screenshots View All

Screenshots View All

Integrations

Gemini
Gemini 2.5 Deep Think
Gemini Enterprise
Gemma
Imagen
Lyria
Veo

Integrations

Gemini
Gemini 2.5 Deep Think
Gemini Enterprise
Gemma
Imagen
Lyria
Veo

Pricing Details

No price information available.
Free Trial
Free Version

Pricing Details

Free
Free Trial
Free Version

Deployment

Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook

Deployment

Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook

Customer Support

Business Hours
Live Rep (24/7)
Online Support

Customer Support

Business Hours
Live Rep (24/7)
Online Support

Types of Training

Training Docs
Webinars
Live Training (Online)
In Person

Types of Training

Training Docs
Webinars
Live Training (Online)
In Person

Vendor Details

Company Name

Google DeepMind

Founded

2010

Country

United States

Website

deepmind.google/discover/blog/introducing-codemender-an-ai-agent-for-code-security/

Vendor Details

Company Name

dvyukov

Website

github.com/dvyukov/go-fuzz

Product Features

Product Features

Alternatives

Alternatives

Atheris Reviews

Atheris

Google
Aardvark Reviews

Aardvark

OpenAI
LibFuzzer Reviews

LibFuzzer

LLVM Project
DeepSWE Reviews

DeepSWE

Agentica Project
ClusterFuzz Reviews

ClusterFuzz

Google