Average Ratings 0 Ratings

Total
ease
features
design
support

No User Reviews. Be the first to provide a review:

Write a Review

Average Ratings 0 Ratings

Total
ease
features
design
support

No User Reviews. Be the first to provide a review:

Write a Review

Description

Boofuzz represents a continuation and enhancement of the established Sulley fuzzing framework. In addition to a variety of bug fixes, Boofuzz emphasizes extensibility and flexibility. Mirroring Sulley, it integrates essential features of a fuzzer, such as rapid data generation, instrumentation, failure detection, and the ability to reset targets after a failure, along with the capability to log test data effectively. It offers a more streamlined installation process and accommodates diverse communication mediums. Furthermore, it includes built-in capabilities for serial fuzzing, as well as support for Ethernet, IP-layer, and UDP broadcasting. The improvements in data recording are notable, providing consistency, clarity, and thoroughness in the results. Users benefit from the ability to export test results in CSV format and enjoy extensible instrumentation and failure detection options. Boofuzz operates as a Python library that facilitates the creation of fuzzer scripts, and setting it up within a virtual environment is highly advisable for optimal performance and organization. This attention to detail and user experience makes Boofuzz a powerful tool for security testing.

Description

American fuzzy lop is a security-focused fuzzer that utilizes a unique form of compile-time instrumentation along with genetic algorithms to automatically generate effective test cases that can uncover new internal states within the targeted binary. This approach significantly enhances the functional coverage of the code being fuzzed. Additionally, the compact and synthesized test cases produced by the tool can serve as a valuable resource for initiating other, more demanding testing processes in the future. Unlike many other instrumented fuzzers, afl-fuzz is engineered for practicality, boasting a minimal performance overhead while employing a diverse array of effective fuzzing techniques and strategies for minimizing effort. It requires almost no setup and can effortlessly manage complicated, real-world scenarios, such as those found in common image parsing or file compression libraries. As an instrumentation-guided genetic fuzzer, it excels at generating complex file semantics applicable to a wide variety of challenging targets, making it a versatile choice for security testing. Its ability to adapt to different environments further enhances its appeal for developers seeking robust solutions.

API Access

Has API

API Access

Has API

Screenshots View All

Screenshots View All

Integrations

Python
C
C++
ClusterFuzz
FreeBSD
Go
Google ClusterFuzz
Google Sheets
Java
Microsoft Excel
NetBSD
OCaml
Objective-C
OpenBSD
QEMU
Rust

Integrations

Python
C
C++
ClusterFuzz
FreeBSD
Go
Google ClusterFuzz
Google Sheets
Java
Microsoft Excel
NetBSD
OCaml
Objective-C
OpenBSD
QEMU
Rust

Pricing Details

Free
Free Trial
Free Version

Pricing Details

Free
Free Trial
Free Version

Deployment

Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook

Deployment

Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook

Customer Support

Business Hours
Live Rep (24/7)
Online Support

Customer Support

Business Hours
Live Rep (24/7)
Online Support

Types of Training

Training Docs
Webinars
Live Training (Online)
In Person

Types of Training

Training Docs
Webinars
Live Training (Online)
In Person

Vendor Details

Company Name

Boofuzz

Website

boofuzz.readthedocs.io/en/stable/

Vendor Details

Company Name

Google

Country

United States

Website

github.com/google/AFL

Product Features

Product Features

Alternatives

Atheris Reviews

Atheris

Google

Alternatives

LibFuzzer Reviews

LibFuzzer

LLVM Project
Sulley Reviews

Sulley

OpenRCE
afl-unicorn Reviews

afl-unicorn

Battelle
go-fuzz Reviews

go-fuzz

dvyukov
LibFuzzer Reviews

LibFuzzer

LLVM Project
Sulley Reviews

Sulley

OpenRCE