Average Ratings 0 Ratings

Total
ease
features
design
support

No User Reviews. Be the first to provide a review:

Write a Review

Average Ratings 0 Ratings

Total
ease
features
design
support

No User Reviews. Be the first to provide a review:

Write a Review

Description

Boofuzz represents a continuation and enhancement of the established Sulley fuzzing framework. In addition to a variety of bug fixes, Boofuzz emphasizes extensibility and flexibility. Mirroring Sulley, it integrates essential features of a fuzzer, such as rapid data generation, instrumentation, failure detection, and the ability to reset targets after a failure, along with the capability to log test data effectively. It offers a more streamlined installation process and accommodates diverse communication mediums. Furthermore, it includes built-in capabilities for serial fuzzing, as well as support for Ethernet, IP-layer, and UDP broadcasting. The improvements in data recording are notable, providing consistency, clarity, and thoroughness in the results. Users benefit from the ability to export test results in CSV format and enjoy extensible instrumentation and failure detection options. Boofuzz operates as a Python library that facilitates the creation of fuzzer scripts, and setting it up within a virtual environment is highly advisable for optimal performance and organization. This attention to detail and user experience makes Boofuzz a powerful tool for security testing.

Description

Radamsa serves as a robust test case generator specifically designed for robustness testing and fuzzing, aimed at evaluating how resilient a program is against malformed and potentially harmful inputs. By analyzing sample files containing valid data, it produces a variety of uniquely altered outputs that challenge the software's stability. One of the standout features of Radamsa is its proven track record in identifying numerous bugs in significant programs, alongside its straightforward scriptability and ease of deployment. Fuzzing, a key technique in uncovering unexpected program behaviors, involves exposing the software to a wide range of input types to observe the resultant actions. This process is divided into two main components: sourcing the diverse inputs and analyzing the outcomes, with Radamsa effectively addressing the first component, while a brief shell script generally handles the latter. Testers often possess a general understanding of potential failures and aim to validate whether those concerns are warranted through this method. Ultimately, Radamsa not only simplifies the testing process but also enhances the reliability of software applications by revealing hidden vulnerabilities.

API Access

Has API

API Access

Has API

Screenshots View All

Screenshots View All

Integrations

FreeBSD
Git
Google Sheets
Make
Microsoft Excel
OpenBSD
Python

Integrations

FreeBSD
Git
Google Sheets
Make
Microsoft Excel
OpenBSD
Python

Pricing Details

Free
Free Trial
Free Version

Pricing Details

Free
Free Trial
Free Version

Deployment

Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook

Deployment

Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook

Customer Support

Business Hours
Live Rep (24/7)
Online Support

Customer Support

Business Hours
Live Rep (24/7)
Online Support

Types of Training

Training Docs
Webinars
Live Training (Online)
In Person

Types of Training

Training Docs
Webinars
Live Training (Online)
In Person

Vendor Details

Company Name

Boofuzz

Website

boofuzz.readthedocs.io/en/stable/

Vendor Details

Company Name

Aki Helin

Website

gitlab.com/akihe/radamsa

Product Features

Product Features

Alternatives

LibFuzzer Reviews

LibFuzzer

LLVM Project

Alternatives

Sulley Reviews

Sulley

OpenRCE
ClusterFuzz Reviews

ClusterFuzz

Google
Atheris Reviews

Atheris

Google
go-fuzz Reviews

go-fuzz

dvyukov