Average Ratings 0 Ratings

Total
ease
features
design
support

No User Reviews. Be the first to provide a review:

Write a Review

Average Ratings 0 Ratings

Total
ease
features
design
support

No User Reviews. Be the first to provide a review:

Write a Review

Description

Boofuzz represents a continuation and enhancement of the established Sulley fuzzing framework. In addition to a variety of bug fixes, Boofuzz emphasizes extensibility and flexibility. Mirroring Sulley, it integrates essential features of a fuzzer, such as rapid data generation, instrumentation, failure detection, and the ability to reset targets after a failure, along with the capability to log test data effectively. It offers a more streamlined installation process and accommodates diverse communication mediums. Furthermore, it includes built-in capabilities for serial fuzzing, as well as support for Ethernet, IP-layer, and UDP broadcasting. The improvements in data recording are notable, providing consistency, clarity, and thoroughness in the results. Users benefit from the ability to export test results in CSV format and enjoy extensible instrumentation and failure detection options. Boofuzz operates as a Python library that facilitates the creation of fuzzer scripts, and setting it up within a virtual environment is highly advisable for optimal performance and organization. This attention to detail and user experience makes Boofuzz a powerful tool for security testing.

Description

LibFuzzer serves as an in-process, coverage-guided engine for evolutionary fuzzing. By being linked directly with the library under examination, it injects fuzzed inputs through a designated entry point, or target function, allowing it to monitor the code paths that are executed while creating variations of the input data to enhance code coverage. The coverage data is obtained through LLVM’s SanitizerCoverage instrumentation, ensuring that users have detailed insights into the testing process. Notably, LibFuzzer continues to receive support, with critical bugs addressed as they arise. To begin utilizing LibFuzzer with a library, one must first create a fuzz target—this function receives a byte array and interacts with the API being tested in a meaningful way. Importantly, this fuzz target operates independently of LibFuzzer, which facilitates its use alongside other fuzzing tools such as AFL or Radamsa, thereby providing versatility in testing strategies. Furthermore, the ability to leverage multiple fuzzing engines can lead to more robust testing outcomes and clearer insights into the library's vulnerabilities.

API Access

Has API

API Access

Has API

Screenshots View All

Screenshots View All

Integrations

Atheris
C
C++
ClusterFuzz
Fuzzbuzz
Google ClusterFuzz
Google Sheets
Jazzer
Microsoft Excel
Python

Integrations

Atheris
C
C++
ClusterFuzz
Fuzzbuzz
Google ClusterFuzz
Google Sheets
Jazzer
Microsoft Excel
Python

Pricing Details

Free
Free Trial
Free Version

Pricing Details

Free
Free Trial
Free Version

Deployment

Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook

Deployment

Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook

Customer Support

Business Hours
Live Rep (24/7)
Online Support

Customer Support

Business Hours
Live Rep (24/7)
Online Support

Types of Training

Training Docs
Webinars
Live Training (Online)
In Person

Types of Training

Training Docs
Webinars
Live Training (Online)
In Person

Vendor Details

Company Name

Boofuzz

Website

boofuzz.readthedocs.io/en/stable/

Vendor Details

Company Name

LLVM Project

Founded

2003

Website

llvm.org/docs/LibFuzzer.html

Product Features

Product Features

Alternatives

Atheris Reviews

Atheris

Google

Alternatives

Atheris Reviews

Atheris

Google
Sulley Reviews

Sulley

OpenRCE
afl-unicorn Reviews

afl-unicorn

Battelle
go-fuzz Reviews

go-fuzz

dvyukov
LibFuzzer Reviews

LibFuzzer

LLVM Project
Jazzer Reviews

Jazzer

Code Intelligence