Average Ratings 0 Ratings

Total
ease
features
design
support

No User Reviews. Be the first to provide a review:

Write a Review

Average Ratings 0 Ratings

Total
ease
features
design
support

No User Reviews. Be the first to provide a review:

Write a Review

Description

Bokeh simplifies the creation of standard visualizations while also accommodating unique or specialized scenarios. It allows users to publish plots, dashboards, and applications seamlessly on web pages or within Jupyter notebooks. The Python ecosystem boasts a remarkable collection of robust analytical libraries such as NumPy, Scipy, Pandas, Dask, Scikit-Learn, and OpenCV. With its extensive selection of widgets, plotting tools, and user interface events that can initiate genuine Python callbacks, the Bokeh server serves as a vital link, enabling the integration of these libraries into dynamic, interactive visualizations accessible via the browser. Additionally, Microscopium, a project supported by researchers at Monash University, empowers scientists to uncover new functions of genes or drugs through the exploration of extensive image datasets facilitated by Bokeh’s interactive capabilities. Another useful tool, Panel, which is developed by Anaconda, enhances data presentation by leveraging the Bokeh server. It streamlines the creation of custom interactive web applications and dashboards by linking user-defined widgets to a variety of elements, including plots, images, tables, and textual information, thus broadening the scope of data interaction possibilities. This combination of tools fosters a rich environment for data analysis and visualization, making it easier for researchers and developers to share their insights.

Description

The h5py library serves as a user-friendly interface for the HDF5 binary data format in Python. It allows users to handle vast quantities of numerical data and efficiently work with it alongside NumPy. For instance, you can access and manipulate multi-terabyte datasets stored on your disk as if they were standard NumPy arrays. You can organize thousands of datasets within a single file, applying your own categorization and tagging methods. H5py embraces familiar NumPy and Python concepts, such as dictionary and array syntax. For example, it enables you to loop through datasets in a file or examine the .shape and .dtype properties of those datasets. Getting started with h5py requires no prior knowledge of HDF5, making it accessible for newcomers. Besides its intuitive high-level interface, h5py is built on an object-oriented Cython wrapper for the HDF5 C API, ensuring that nearly any operation possible in C with HDF5 can also be performed using h5py. This combination of simplicity and power makes it a popular choice for data handling in the scientific community.

API Access

Has API

API Access

Has API

Screenshots View All

Screenshots View All

Integrations

Python
Google Maps
JavaScript
NumPy
Visual Studio
Xcode

Integrations

Python
Google Maps
JavaScript
NumPy
Visual Studio
Xcode

Pricing Details

Free
Free Trial
Free Version

Pricing Details

Free
Free Trial
Free Version

Deployment

Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook

Deployment

Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook

Customer Support

Business Hours
Live Rep (24/7)
Online Support

Customer Support

Business Hours
Live Rep (24/7)
Online Support

Types of Training

Training Docs
Webinars
Live Training (Online)
In Person

Types of Training

Training Docs
Webinars
Live Training (Online)
In Person

Vendor Details

Company Name

Bokeh

Website

bokeh.org

Vendor Details

Company Name

HDF5

Website

www.h5py.org

Product Features

Product Features

Alternatives

Alternatives

Plotly Dash Reviews

Plotly Dash

Plotly