Average Ratings 1 Rating

Total
ease
features
design
support

Average Ratings 0 Ratings

Total
ease
features
design
support

No User Reviews. Be the first to provide a review:

Write a Review

Description

BERT is a significant language model that utilizes a technique for pre-training language representations. This pre-training process involves initially training BERT on an extensive dataset, including resources like Wikipedia. Once this foundation is established, the model can be utilized for diverse Natural Language Processing (NLP) applications, including tasks such as question answering and sentiment analysis. Additionally, by leveraging BERT alongside AI Platform Training, it becomes possible to train various NLP models in approximately half an hour, streamlining the development process for practitioners in the field. This efficiency makes it an appealing choice for developers looking to enhance their NLP capabilities.

Description

fastText is a lightweight and open-source library created by Facebook's AI Research (FAIR) team, designed for the efficient learning of word embeddings and text classification. It provides capabilities for both unsupervised word vector training and supervised text classification, making it versatile for various applications. A standout characteristic of fastText is its ability to utilize subword information, as it represents words as collections of character n-grams; this feature significantly benefits the processing of morphologically complex languages and words that are not in the training dataset. The library is engineered for high performance, allowing for rapid training on extensive datasets, and it also offers the option to compress models for use on mobile platforms. Users can access pre-trained word vectors for 157 different languages, generated from Common Crawl and Wikipedia, which are readily available for download. Additionally, fastText provides aligned word vectors for 44 languages, enhancing its utility for cross-lingual natural language processing applications, thus broadening its use in global contexts. This makes fastText a powerful tool for researchers and developers in the field of natural language processing.

API Access

Has API

API Access

Has API

Screenshots View All

Screenshots View All

Integrations

AWS Marketplace
Alpaca
Amazon SageMaker Model Training
Gensim
Gopher
Haystack
JavaScript
PostgresML
Python
Spark NLP
WebAssembly

Integrations

AWS Marketplace
Alpaca
Amazon SageMaker Model Training
Gensim
Gopher
Haystack
JavaScript
PostgresML
Python
Spark NLP
WebAssembly

Pricing Details

Free
Free Trial
Free Version

Pricing Details

Free
Free Trial
Free Version

Deployment

Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook

Deployment

Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook

Customer Support

Business Hours
Live Rep (24/7)
Online Support

Customer Support

Business Hours
Live Rep (24/7)
Online Support

Types of Training

Training Docs
Webinars
Live Training (Online)
In Person

Types of Training

Training Docs
Webinars
Live Training (Online)
In Person

Vendor Details

Company Name

Google

Founded

1998

Country

United States

Website

cloud.google.com/ai-platform/training/docs/algorithms/bert-start

Vendor Details

Company Name

fastText

Website

fasttext.cc/

Product Features

Natural Language Processing

Co-Reference Resolution
In-Database Text Analytics
Named Entity Recognition
Natural Language Generation (NLG)
Open Source Integrations
Parsing
Part-of-Speech Tagging
Sentence Segmentation
Stemming/Lemmatization
Tokenization

Product Features

Alternatives

BLOOM Reviews

BLOOM

BigScience

Alternatives

GloVe Reviews

GloVe

Stanford NLP
ALBERT Reviews

ALBERT

Google
Gensim Reviews

Gensim

Radim Řehůřek
LexVec Reviews

LexVec

Alexandre Salle
Chinchilla Reviews

Chinchilla

Google DeepMind
word2vec Reviews

word2vec

Google