Average Ratings 0 Ratings
Average Ratings 0 Ratings
Description
Utilize Azure Table storage to manage petabytes of semi-structured data efficiently while keeping expenses low. In contrast to various data storage solutions, whether local or cloud-based, Table storage enables seamless scaling without the need for manual sharding of your dataset. Additionally, concerns about data availability are mitigated through the use of geo-redundant storage, which ensures that data is replicated three times within a single region and an extra three times in a distant region, enhancing data resilience. This storage option is particularly advantageous for accommodating flexible datasets—such as user data from web applications, address books, device details, and various other types of metadata—allowing you to develop cloud applications without restricting the data model to specific schemas. Each row in a single table can possess a unique structure, for instance, featuring order details in one entry and customer data in another, which grants you the flexibility to adapt your application and modify the table schema without requiring downtime. Furthermore, Table storage is designed with a robust consistency model to ensure reliable data access. Overall, it provides an adaptable and scalable solution for modern data management needs.
Description
Voldemort does not function as a relational database, as it does not aim to fulfill arbitrary relations while adhering to ACID properties. It also does not operate as an object database that seeks to seamlessly map object reference structures. Additionally, it does not introduce a novel abstraction like document orientation. Essentially, it serves as a large, distributed, durable, and fault-tolerant hash table. For applications leveraging an Object-Relational (O/R) mapper such as ActiveRecord or Hibernate, this can lead to improved horizontal scalability and significantly enhanced availability, albeit with a considerable trade-off in convenience. In the context of extensive applications facing the demands of internet-level scalability, a system is often comprised of multiple functionally divided services or APIs, which may handle storage across various data centers with their own horizontally partitioned storage systems. In these scenarios, the possibility of performing arbitrary joins within the database becomes impractical, as not all data can be accessed within a single database instance, making data management even more complex. Consequently, developers must adapt their strategies to navigate these limitations effectively.
API Access
Has API
API Access
Has API
Integrations
Auth.js
Autymate
DQ Studio
Data Sentinel
Microsoft Azure
NXLog
SSIS Integration Toolkit
StarfishETL
Integrations
Auth.js
Autymate
DQ Studio
Data Sentinel
Microsoft Azure
NXLog
SSIS Integration Toolkit
StarfishETL
Pricing Details
No price information available.
Free Trial
Free Version
Pricing Details
No price information available.
Free Trial
Free Version
Deployment
Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook
Deployment
Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook
Customer Support
Business Hours
Live Rep (24/7)
Online Support
Customer Support
Business Hours
Live Rep (24/7)
Online Support
Types of Training
Training Docs
Webinars
Live Training (Online)
In Person
Types of Training
Training Docs
Webinars
Live Training (Online)
In Person
Vendor Details
Company Name
Microsoft
Founded
1975
Country
United States
Website
azure.microsoft.com/en-us/services/storage/tables/#features
Vendor Details
Company Name
Voldemort
Website
www.project-voldemort.com/voldemort/
Product Features
NoSQL Database
Auto-sharding
Automatic Database Replication
Data Model Flexibility
Deployment Flexibility
Dynamic Schemas
Integrated Caching
Multi-Model
Performance Management
Security Management
Product Features
Data Replication
Asynchronous Data Replication
Automated Data Retention
Continuous Replication
Cross-Platform Replication
Dashboard
Instant Failover
Orchestration
Remote Database Replication
Reporting / Analytics
Simulation / Testing
Synchronous Data Replication