Average Ratings 0 Ratings

Total
ease
features
design
support

No User Reviews. Be the first to provide a review:

Write a Review

Average Ratings 0 Ratings

Total
ease
features
design
support

No User Reviews. Be the first to provide a review:

Write a Review

Description

Streamline the entire machine learning lifecycle from start to finish. Equip developers and data scientists with an extensive array of efficient tools for swiftly building, training, and deploying machine learning models. Enhance the speed of market readiness and promote collaboration among teams through leading-edge MLOps—akin to DevOps but tailored for machine learning. Drive innovation within a secure, reliable platform that prioritizes responsible AI practices. Cater to users of all expertise levels with options for both code-centric and drag-and-drop interfaces, along with automated machine learning features. Implement comprehensive MLOps functionalities that seamlessly align with existing DevOps workflows, facilitating the management of the entire machine learning lifecycle. Emphasize responsible AI by providing insights into model interpretability and fairness, securing data through differential privacy and confidential computing, and maintaining control over the machine learning lifecycle with audit trails and datasheets. Additionally, ensure exceptional compatibility with top open-source frameworks and programming languages such as MLflow, Kubeflow, ONNX, PyTorch, TensorFlow, Python, and R, thus broadening accessibility and usability for diverse projects. By fostering an environment that promotes collaboration and innovation, teams can achieve remarkable advancements in their machine learning endeavors.

Description

The RAPIDS software library suite, designed on CUDA-X AI, empowers users to run comprehensive data science and analytics workflows entirely on GPUs. It utilizes NVIDIA® CUDA® primitives for optimizing low-level computations while providing user-friendly Python interfaces that leverage GPU parallelism and high-speed memory access. Additionally, RAPIDS emphasizes essential data preparation processes tailored for analytics and data science, featuring a familiar DataFrame API that seamlessly integrates with various machine learning algorithms to enhance pipeline efficiency without incurring the usual serialization overhead. Moreover, it supports multi-node and multi-GPU setups, enabling significantly faster processing and training on considerably larger datasets. By incorporating RAPIDS, you can enhance your Python data science workflows with minimal code modifications and without the need to learn any new tools. This approach not only streamlines the model iteration process but also facilitates more frequent deployments, ultimately leading to improved machine learning model accuracy. As a result, RAPIDS significantly transforms the landscape of data science, making it more efficient and accessible.

API Access

Has API

API Access

Has API

Screenshots View All

Screenshots View All

Integrations

Apache Spark
Azure Container Registry
Azure Database for MariaDB
Azure Marketplace
Databricks Data Intelligence Platform
Evvox
HPE Ezmeral Data Fabric
Iguazio
Intel Tiber AI Studio
Kedro
MLflow
ModelOp
NVIDIA Triton Inference Server
New Relic
Plotly Dash
Slingshot
Superwise
Wizata

Integrations

Apache Spark
Azure Container Registry
Azure Database for MariaDB
Azure Marketplace
Databricks Data Intelligence Platform
Evvox
HPE Ezmeral Data Fabric
Iguazio
Intel Tiber AI Studio
Kedro
MLflow
ModelOp
NVIDIA Triton Inference Server
New Relic
Plotly Dash
Slingshot
Superwise
Wizata

Pricing Details

No price information available.
Free Trial
Free Version

Pricing Details

No price information available.
Free Trial
Free Version

Deployment

Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook

Deployment

Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook

Customer Support

Business Hours
Live Rep (24/7)
Online Support

Customer Support

Business Hours
Live Rep (24/7)
Online Support

Types of Training

Training Docs
Webinars
Live Training (Online)
In Person

Types of Training

Training Docs
Webinars
Live Training (Online)
In Person

Vendor Details

Company Name

Microsoft

Founded

1975

Country

United States

Website

azure.microsoft.com/en-us/products/machine-learning/

Vendor Details

Company Name

NVIDIA

Founded

1993

Country

United States

Website

developer.nvidia.com/rapids

Product Features

Data Labeling

Human-in-the-loop
Labeling Automation
Labeling Quality
Performance Tracking
Polygon, Rectangle, Line, Point
SDK
Supports Audio Files
Task Management
Team Collaboration
Training Data Management

Machine Learning

Deep Learning
ML Algorithm Library
Model Training
Natural Language Processing (NLP)
Predictive Modeling
Statistical / Mathematical Tools
Templates
Visualization

Product Features

Data Science

Access Control
Advanced Modeling
Audit Logs
Data Discovery
Data Ingestion
Data Preparation
Data Visualization
Model Deployment
Reports

Alternatives

Alternatives

Vertex AI Reviews

Vertex AI

Google