Average Ratings 0 Ratings
Average Ratings 0 Ratings
Description
Azure AI Content Understanding empowers organizations to convert unstructured multimodal data into actionable insights. By extracting valuable information from various input formats including text, audio, images, and video, businesses can unlock essential insights. Employing advanced AI techniques like schema extraction and grounding, it ensures the generation of accurate, high-quality data suitable for further applications. This technology simplifies the integration of diverse data types into a cohesive workflow, resulting in reduced costs and an expedited path to value realization. For instance, businesses and call center operators can leverage insights from call recordings to monitor crucial KPIs, improve product experiences, and respond to customer inquiries more efficiently and accurately. Furthermore, by ingesting a wide array of data types such as documents, images, audio, or video, organizations can utilize various AI models offered in Azure AI to convert raw input into structured outputs that facilitate easier processing and analysis in subsequent applications. Such capabilities ultimately enhance decision-making processes across various sectors.
Description
Discover the transformative capabilities of large language models as they redefine Natural Language Processing (NLP) through Spark NLP, an open-source library that empowers users with scalable LLMs. The complete codebase is accessible under the Apache 2.0 license, featuring pre-trained models and comprehensive pipelines. As the sole NLP library designed specifically for Apache Spark, it stands out as the most widely adopted solution in enterprise settings. Spark ML encompasses a variety of machine learning applications that leverage two primary components: estimators and transformers. Estimators possess a method that ensures data is secured and trained for specific applications, while transformers typically result from the fitting process, enabling modifications to the target dataset. These essential components are intricately integrated within Spark NLP, facilitating seamless functionality. Pipelines serve as a powerful mechanism that unites multiple estimators and transformers into a cohesive workflow, enabling a series of interconnected transformations throughout the machine-learning process. This integration not only enhances the efficiency of NLP tasks but also simplifies the overall development experience.
API Access
Has API
API Access
Has API
Integrations
APIFuzzer
Apache Spark
Azure AI Content Safety
Azure AI Foundry
Azure AI Services
BERT
Conda
Databricks Data Intelligence Platform
Flair
Java
Integrations
APIFuzzer
Apache Spark
Azure AI Content Safety
Azure AI Foundry
Azure AI Services
BERT
Conda
Databricks Data Intelligence Platform
Flair
Java
Pricing Details
No price information available.
Free Trial
Free Version
Pricing Details
Free
Free Trial
Free Version
Deployment
Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook
Deployment
Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook
Customer Support
Business Hours
Live Rep (24/7)
Online Support
Customer Support
Business Hours
Live Rep (24/7)
Online Support
Types of Training
Training Docs
Webinars
Live Training (Online)
In Person
Types of Training
Training Docs
Webinars
Live Training (Online)
In Person
Vendor Details
Company Name
Microsoft
Founded
1975
Country
United States
Website
azure.microsoft.com/en-us/products/ai-services/ai-content-understanding
Vendor Details
Company Name
John Snow Labs
Country
United States
Website
sparknlp.org
Product Features
Natural Language Processing
Co-Reference Resolution
In-Database Text Analytics
Named Entity Recognition
Natural Language Generation (NLG)
Open Source Integrations
Parsing
Part-of-Speech Tagging
Sentence Segmentation
Stemming/Lemmatization
Tokenization
Product Features
Natural Language Processing
Co-Reference Resolution
In-Database Text Analytics
Named Entity Recognition
Natural Language Generation (NLG)
Open Source Integrations
Parsing
Part-of-Speech Tagging
Sentence Segmentation
Stemming/Lemmatization
Tokenization